- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 147字
- 2021-07-02 20:49:11
How it works...
The performance of the model can be assessed using many metrics such as accuracy, Area under curve (AUC), misclassification error (%), misclassification error count, F1-score, precision, recall, specificity, and so on. However, in this chapter, the assessment of model performance is based on AUC.
The following is the training and cross validation accuracy of the trained model:
# Training accuracy (AUC)
> occupancy_train.glm@model$training_metrics@metrics$AUC
[1] 0.994583
# Cross validation accuracy (AUC)
> occupancy_train.glm@model$cross_validation_metrics@metrics$AUC
[1] 0.9945057
Now, let's assess the performance of the model on test data. The following code helps in predicting the outcome of the test data:
# Predict on test data
yhat <- h2o.predict(occupancy_train.glm, occupancy_test.hex)
Then, evaluate the AUC value based on the actual test outcome as follows:
# Test accuracy (AUC)
> yhat$pmax <- pmax(yhat$p0, yhat$p1, na.rm = TRUE)
> roc_obj <- pROC::roc(c(as.matrix(occupancy_test.hex$Occupancy)),
c(as.matrix(yhat$pmax)))
> auc(roc_obj)
Area under the curve: 0.9915
In H2O, one can also compute variable importance from the GLM model, as shown in the figure following this command:
#compute variable importance and performance
h2o.varimp_plot(occupancy_train.glm, num_of_features = 5)

Variable importance using H2O
推薦閱讀
- HTML5移動Web開發技術
- Java 9 Concurrency Cookbook(Second Edition)
- Practical DevOps
- 人臉識別原理及算法:動態人臉識別系統研究
- Java EE 7 Development with NetBeans 8
- Visual C#.NET程序設計
- BeagleBone Black Cookbook
- Visual C++開發入行真功夫
- ExtJS高級程序設計
- Instant jQuery Boilerplate for Plugins
- 程序員的成長課
- Java核心編程
- Spring Boot從入門到實戰
- Visual C++程序設計全程指南
- INSTANT EaselJS Starter