- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 147字
- 2021-07-02 20:49:11
How it works...
The performance of the model can be assessed using many metrics such as accuracy, Area under curve (AUC), misclassification error (%), misclassification error count, F1-score, precision, recall, specificity, and so on. However, in this chapter, the assessment of model performance is based on AUC.
The following is the training and cross validation accuracy of the trained model:
# Training accuracy (AUC)
> occupancy_train.glm@model$training_metrics@metrics$AUC
[1] 0.994583
# Cross validation accuracy (AUC)
> occupancy_train.glm@model$cross_validation_metrics@metrics$AUC
[1] 0.9945057
Now, let's assess the performance of the model on test data. The following code helps in predicting the outcome of the test data:
# Predict on test data
yhat <- h2o.predict(occupancy_train.glm, occupancy_test.hex)
Then, evaluate the AUC value based on the actual test outcome as follows:
# Test accuracy (AUC)
> yhat$pmax <- pmax(yhat$p0, yhat$p1, na.rm = TRUE)
> roc_obj <- pROC::roc(c(as.matrix(occupancy_test.hex$Occupancy)),
c(as.matrix(yhat$pmax)))
> auc(roc_obj)
Area under the curve: 0.9915
In H2O, one can also compute variable importance from the GLM model, as shown in the figure following this command:
#compute variable importance and performance
h2o.varimp_plot(occupancy_train.glm, num_of_features = 5)

Variable importance using H2O
推薦閱讀
- Data Visualization with D3 4.x Cookbook(Second Edition)
- 零基礎搭建量化投資系統:以Python為工具
- 企業級Java EE架構設計精深實踐
- Visual Basic程序開發(學習筆記)
- AIRAndroid應用開發實戰
- Easy Web Development with WaveMaker
- Java EE 7 Development with NetBeans 8
- 可解釋機器學習:模型、方法與實踐
- C語言程序設計
- MATLAB for Machine Learning
- 機器學習與R語言實戰
- Serverless computing in Azure with .NET
- Create React App 2 Quick Start Guide
- Android移動應用開發項目教程
- 計算機應用基礎(第二版)