- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 157字
- 2021-07-02 20:49:09
Getting ready
Setting up all three packages could be quite cumbersome depending on the operating system utilized. The following dockerfile code can be used to set up an environment with tensorflow, mxnet with GPU, and h2o installed with all the dependencies:
FROM chstone/mxnet-gpu:latest
MAINTAINER PKS Prakash <prakash5801>
# Install dependencies
RUN apt-get update && apt-get install -y
python2.7
python-pip
python-dev
ipython
ipython-notebook
python-pip
default-jre
# Install pip and Jupyter notebook
RUN pip install --upgrade pip &&
pip install jupyter
# Add R to Jupyter kernel
RUN Rscript -e "install.packages(c('repr', 'IRdisplay', 'crayon', 'pbdZMQ'), dependencies=TRUE, repos='https://cran.rstudio.com')" &&
Rscript -e "library(devtools); library(methods); options(repos=c(CRAN='https://cran.rstudio.com')); devtools::install_github('IRkernel/IRkernel')" &&
Rscript -e "library(IRkernel); IRkernel::installspec(name = 'ir32', displayname = 'R 3.2')"
# Install H2O
RUN Rscript -e "install.packages('h2o', dependencies=TRUE, repos='http://cran.rstudio.com')"
# Install tensorflow fixing the proxy port
RUN pip install tensorflow-gpu
RUN Rscript -e "library(devtools); devtools::install_github('rstudio/tensorflow')"
The current image is created on top of the chstone/mxnet-gpu Docker image.
The chstone/mxnet-gpu is a docker hub repository at https://hub.docker.com/r/chstone/mxnet-gpu/.
推薦閱讀
- The Supervised Learning Workshop
- CentOS 7 Server Deployment Cookbook
- Java面向對象程序開發及實戰
- Blockly創意趣味編程
- Full-Stack Vue.js 2 and Laravel 5
- Reactive Android Programming
- Learning R for Geospatial Analysis
- Java程序員面試筆試寶典(第2版)
- 單片機原理及應用技術
- Fastdata Processing with Spark
- 石墨烯改性塑料
- After Effects CC技術大全
- Yii2 By Example
- Microsoft Dynamics GP 2013 Cookbook
- 軟件再工程:優化現有軟件系統的方法與最佳實踐