- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 163字
- 2021-07-02 20:49:06
How to do it...
- The following R command installs MXNet using prebuilt binary packages, and is hassle-free. The drat package is then used to add the dlmc repository from git followed by the mxnet installation:
install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("mxnet")
2. The following code helps install MXNet in Ubuntu (V16.04). The first two lines are used to install dependencies and the remaining lines are used to install MXNet, subject to the satisfaction of all the dependencies:
sudo apt-get update
sudo apt-get install -y build-essential git libatlas-base-dev
libopencv-dev
git clone https://github.com/dmlc/mxnet.git ~/mxnet --recursive
cd ~/mxnet
cp make/config.mk .
echo "USE_BLAS=openblas" >>config.mk
make -j$(nproc)
3. If MXNet is to be built for GPU, the following config needs to be updated before the make command:
echo "USE_CUDA=1" >>config.mk
echo "USE_CUDA_PATH=/usr/local/cuda" >>config.mk
echo "USE_CUDNN=1" >>config.mk
A detailed installation of MXNet for other operating systems can be found at http://mxnet.io/get_started/setup.html.
4. The following command is used to install MXNet (GPU-based) using Docker with all the dependencies:
docker pull chstone/mxnet-gpu
推薦閱讀
- Learning Spring 5.0
- Visual C++數字圖像模式識別技術詳解
- Java Web及其框架技術
- Flask Web開發入門、進階與實戰
- Ray分布式機器學習:利用Ray進行大模型的數據處理、訓練、推理和部署
- Swift 3 New Features
- Unity Shader入門精要
- Visual C#.NET程序設計
- Go并發編程實戰
- 打開Go語言之門:入門、實戰與進階
- Java Web開發實例大全(基礎卷) (軟件工程師開發大系)
- Solr權威指南(下卷)
- HTML5 WebSocket權威指南
- Web開發新體驗
- Building Scalable Apps with Redis and Node.js