官术网_书友最值得收藏!

Tracking the objects using a weak_ptr pointer

We have discussed the shared_ptr in the preceding section. The pointer is actually a little bit fat pointer. It logically points to two objects, the object being managed and the pointing counter using the use_count() method. Every shared_ptr basically has a strong reference count that prevents the object from being deleted and a weak reference count that does not prevent the object being deleted if the shared_ptr object's use count reaches 0, although we don't even use the weak reference count. For this reason, we can use only one reference count so we can use the weak_ptr pointer. The weak_ptr pointer refers to an object that is managed by shared_ptr. The advantage of weak_ptr is that it can be used to refer to an object, but we can only access it if the object still exists and without preventing the object from being deleted by some other reference holder if the strong reference count reaches zero. It is useful when we deal with data structures. Let's take a look at the following block of code to analyze the use of weak_ptr:

    /* weak_ptr_1.cpp */
#include <memory>
#include <iostream>

using namespace std;

auto main() -> int
{
cout << "[weak_ptr_1.cpp]" << endl;

auto sp = make_shared<int>(1234);

auto wp = weak_ptr<int>{ sp };

if(wp.expired())
cout << "wp is expired" << endl;
else
cout << "wp is not expired" << endl;
cout << "wp pointing counter = " << wp.use_count() << endl;
if(auto locked = wp.lock())
cout << "wp is locked. Value = " << *locked << endl;
else
{
cout << "wp is unlocked" << endl;
wp.reset();
}
cout << endl;

sp = nullptr;

if(wp.expired())
cout << "wp is expired" << endl;
else
cout << "wp is not expired" << endl;
cout << "wp pointing counter = " << wp.use_count() << endl;
if(auto locked = wp.lock())
cout << "wp is locked. Value = " << *locked << endl;
else
{
cout << "wp is unlocked" << endl;
wp.reset();
}
cout << endl;

return 0;
}

Before we analyze the preceding code, let's take a look at the following screenshot from the output console if we run the code:

At first, we instantiate shared_ptr and, as we discussed previously, the weak_ptr points to the object managed by shared_ptr. We then assign wp to the shared_ptr variable, sp. After we have a weak_ptr pointer, we then check its behavior. By calling the expired() method, we can figure out whether the referenced object was already deleted. And, since the wp variable is just constructed, it is not expired yet. The weak_ptr pointer also holds the value of the object counting by calling the use_count() method, as we used in shared_ptr. We then invoke the locked() method to create a shared_ptr that manages the referenced object and finds the value weak_ptr is pointing at. We now have a shared_ptr variable pointing to the address that holds the 1234 value.

We reset sp to nullptr afterward. Although we don't touch the weak_ptr pointer, it is also changed. As we can see from the console screenshot, now wp is expired since the object has been deleted. The counter also changes and becomes 0 since it points to nothing. Moreover, it is unlocked since the shared_ptr object has been deleted.

主站蜘蛛池模板: 锡林浩特市| 疏勒县| 惠水县| 鞍山市| 苏尼特左旗| 香港 | 嫩江县| 宝丰县| 张家港市| 禹州市| 怀柔区| 米易县| 邵武市| 弋阳县| 锡林郭勒盟| 定边县| 滨州市| 奎屯市| 永康市| 淳化县| 赣榆县| 炉霍县| 乐都县| 高碑店市| 顺昌县| 淄博市| 兰溪市| 封丘县| 新巴尔虎左旗| 云南省| 鹿泉市| 霍林郭勒市| 新沂市| 方正县| 普兰店市| 开原市| 乳源| 屏南县| 淮滨县| 神池县| 玉树县|