- Mastering Predictive Analytics with R(Second Edition)
- James D. Miller Rui Miguel Forte
- 77字
- 2021-07-02 20:25:15
Chapter 2. Tidying Data and Measuring Performance
In this chapter, we will cover the topics of tidying your data in preparation for predictive modeling, performance metrics, cross-validation, and learning curves.
In statistics, it is an accepted concept that there are two types of data, which are:
- Untidy
- Tidy
Untidy data is considered to be raw or messy; tidy data is data that has gone through a quality assurance process and is ready to be used.
推薦閱讀
- 國際大學生程序設計競賽中山大學內部選拔真題解(二)
- Photoshop智能手機APP UI設計之道
- 數據結構(Java語言描述)
- 機器人Python青少年編程開發實例
- Symfony2 Essentials
- 利用Python進行數據分析(原書第3版)
- 持續輕量級Java EE開發:編寫可測試的代碼
- Learning jQuery(Fourth Edition)
- Apache Camel Developer's Cookbook
- Python機器學習算法與應用
- jQuery從入門到精通(微課精編版)
- Less Web Development Cookbook
- Building a Media Center with Raspberry Pi
- Leaflet.js Essentials
- Spring MVC Blueprints