官术网_书友最值得收藏!

The machine learning algorithm using a distributed environment

Machine learning algorithms combine simple tasks into complex patterns, that are even more complicated in distributed environment. Let's take a simple decision tree algorithm (reference), for example. This particular algorithm creates a binary tree that tries to fit training data and minimize prediction errors. However, in order to do this, it has to decide about the branch of tree it has to send every data point to (don't worry, we'll cover the mechanics of how this algorithm works along with some very useful parameters that you can learn in later in the book). Let's demonstrate it with a simple example:

Figure 3 - Example of red and blue data points covering 2D space.

Consider the situation depicted in preceding figure. A two-dimensional board with many points colored in two colors: red and blue. The goal of the decision tree is to learn and generalize the shape of data and help decide about the color of a new point. In our example, we can easily see that the points almost follow a chessboard pattern. However, the algorithm has to figure out the structure by itself. It starts by finding the best position of a vertical or horizontal line, which would separate the red points from the blue points.

The found decision is stored in the tree root and the steps are recursively applied on both the partitions. The algorithm ends when there is a single point in the partition:

Figure 4 - The final decision tree and projection of its prediction to the original space of points.
主站蜘蛛池模板: 南江县| 北碚区| 彭山县| 乐至县| 华宁县| 佳木斯市| 府谷县| 公主岭市| 德保县| 新龙县| 简阳市| 松潘县| 潞西市| 湄潭县| 江永县| 林周县| 河源市| 吉安市| 五河县| 同江市| 开封市| 成武县| 马边| 宜兰县| 互助| 溆浦县| 邢台县| 蓝山县| 南皮县| 公主岭市| 尼木县| 扬中市| 渝中区| 阿城市| 湄潭县| 临西县| 青河县| 平舆县| 商洛市| 鸡西市| 峡江县|