官术网_书友最值得收藏!

Logistic distribution

This distribution is similar to the normal distribution, but with the morphological difference of having a more elongated tail. The main importance of this distribution lies in its cumulative distribution function (CDF), which we will be using in the following chapters, and will certainly look familiar.

Let's first represent the base distribution by using the following code snippet:

    import matplotlib.pyplot as plt #Import the plot library 
import numpy as np
mu=0.5
sigma=0.5
distro2 = np.random.logistic(mu, sigma, 10000)
plt.hist(distro2, 50, normed=True)
distro = np.random.normal(mu, sigma, 10000)
plt.hist(distro, 50, normed=True)
plt.show()

Take a look at the following graph:

Logistic (red) vs Normal (blue) distribution

Then, as mentioned before, let's compute the CDF of the logistic distribution so that you will see a very familiar figure, the sigmoid curve, which we will see again when we review neural network activation functions:

    plt.figure() 
logistic_cumulative = np.random.logistic(mu, sigma, 10000)/0.02
plt.hist(logistic_cumulative, 50, normed=1, cumulative=True)
plt.show()

Take a look at the following graph:

Inverse of the logistic distribution
主站蜘蛛池模板: 隆化县| 雅江县| 定结县| 盱眙县| 平顶山市| 壤塘县| 衡山县| 肥西县| 潍坊市| 沈阳市| 丘北县| 广饶县| 呼伦贝尔市| 宁化县| 准格尔旗| 当涂县| 河西区| 莱芜市| 清远市| 精河县| 五华县| 东丽区| 嘉定区| 田林县| 离岛区| 肇州县| 福泉市| 合作市| 界首市| 老河口市| 新和县| 任丘市| 朝阳县| 平原县| 孟津县| 纳雍县| 沙坪坝区| 西宁市| 宜城市| 常德市| 宜丰县|