- Machine Learning for Developers
- Rodolfo Bonnin
- 88字
- 2021-07-02 15:46:47
Uniform distribution
This very common distribution is the first continuous distribution that we will see. As the name implies, it has a constant probability value for any interval of the domain.
In order to integrate to 1, a and b being the extreme of the function, this probability has the value of 1/(b-a).
Let's generate a plot with a sample uniform distribution using a very regular histogram, as generated by the following code:
plt.figure()
uniform_low=0.25
uniform_high=0.8
plt.hist(uniform, 50, normed=1)
plt.show()
Take look at the following graph:

Uniform distribution
推薦閱讀
- Cocos2d Cross-Platform Game Development Cookbook(Second Edition)
- Vue.js設(shè)計(jì)與實(shí)現(xiàn)
- 自然語言處理實(shí)戰(zhàn):預(yù)訓(xùn)練模型應(yīng)用及其產(chǎn)品化
- PyTorch自動駕駛視覺感知算法實(shí)戰(zhàn)
- Java深入解析:透析Java本質(zhì)的36個話題
- Linux命令行與shell腳本編程大全(第4版)
- 微信小程序開發(fā)與實(shí)戰(zhàn)(微課版)
- Android應(yīng)用開發(fā)深入學(xué)習(xí)實(shí)錄
- Python全棧開發(fā):基礎(chǔ)入門
- 數(shù)據(jù)結(jié)構(gòu):Python語言描述
- C/C++程序設(shè)計(jì)教程
- 深入理解Zabbix監(jiān)控系統(tǒng)
- 語義Web編程
- HTML+CSS+JavaScript前端開發(fā)(慕課版)
- Learning ClojureScript