官术网_书友最值得收藏!

How to do it...

  1. First, we install CNTK with pip as follows:
pip install https://cntk.ai/PythonWheel/GPU/cntk-2.2-cp35-cp35m-linux_x86_64.whl

Adjust the wheel file if necessary (see https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-Linux-Python?tabs=cntkpy22). 

  1. After installing CNTK, we can import it into our Python environment:
import cntk
  1. Let's create some simple dummy data that we can use for training:
import numpy as np
x_input = np.array([[1,2,3,4,5]], np.float32)
y_input = np.array([[10]], np.float32)
  1. Next, we need to define the placeholders for the input data:
X = cntk.input_variable(5, np.float32)
y = cntk.input_variable(1, np.float32)
  1. With CNTK, it's straightforward to stack multiple layers. We stack a dense layer with 32 inputs on top of an output layer with 1 output:
from cntk.layers import Dense, Sequential
model = Sequential([Dense(32),
Dense(1)])(X)
  1. Next, we define the loss function:
loss = cntk.squared_error(model, y)
  1. Now, we are ready to finalize our model with an optimizer:
learning_rate = 0.001
trainer = cntk.Trainer(model, (loss), cntk.adagrad(model.parameters, learning_rate))
  1. Finally, we can train our model as follows:
for epoch in range(10):
trainer.train_minibatch({X: x_input, y: y_input})
As we have demonstrated in this introduction, it is straightforward to build models in CNTK with the appropriate high-level wrappers. However, just like TensorFlow and PyTorch, you can choose to implement your model on a more granular level, which gives you a lot of freedom.
主站蜘蛛池模板: 新源县| 襄垣县| 广水市| 铁力市| 舒兰市| 林周县| 道孚县| 邹平县| 宁德市| 乌审旗| 定襄县| 丹棱县| 昆山市| 建水县| 江源县| 神农架林区| 陆川县| 靖宇县| 勃利县| 遂宁市| 丰宁| 安龙县| 阿拉善左旗| 阳曲县| 宁强县| 临武县| 安远县| 淳化县| 嘉义县| 闽侯县| 白城市| 扬州市| 太康县| 建湖县| 磐石市| 且末县| 渝中区| 文昌市| 桐城市| 屏边| 曲水县|