官术网_书友最值得收藏!

How to do it...

  1. First, we install CNTK with pip as follows:
pip install https://cntk.ai/PythonWheel/GPU/cntk-2.2-cp35-cp35m-linux_x86_64.whl

Adjust the wheel file if necessary (see https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-Linux-Python?tabs=cntkpy22). 

  1. After installing CNTK, we can import it into our Python environment:
import cntk
  1. Let's create some simple dummy data that we can use for training:
import numpy as np
x_input = np.array([[1,2,3,4,5]], np.float32)
y_input = np.array([[10]], np.float32)
  1. Next, we need to define the placeholders for the input data:
X = cntk.input_variable(5, np.float32)
y = cntk.input_variable(1, np.float32)
  1. With CNTK, it's straightforward to stack multiple layers. We stack a dense layer with 32 inputs on top of an output layer with 1 output:
from cntk.layers import Dense, Sequential
model = Sequential([Dense(32),
Dense(1)])(X)
  1. Next, we define the loss function:
loss = cntk.squared_error(model, y)
  1. Now, we are ready to finalize our model with an optimizer:
learning_rate = 0.001
trainer = cntk.Trainer(model, (loss), cntk.adagrad(model.parameters, learning_rate))
  1. Finally, we can train our model as follows:
for epoch in range(10):
trainer.train_minibatch({X: x_input, y: y_input})
As we have demonstrated in this introduction, it is straightforward to build models in CNTK with the appropriate high-level wrappers. However, just like TensorFlow and PyTorch, you can choose to implement your model on a more granular level, which gives you a lot of freedom.
主站蜘蛛池模板: 聂拉木县| 太湖县| 永川市| 桃园市| 神木县| 清涧县| 金川县| 炎陵县| 淮安市| 家居| 昂仁县| 克什克腾旗| 松潘县| 定陶县| 安吉县| 博白县| 怀宁县| 青海省| 乐清市| 拉萨市| 林甸县| 新巴尔虎左旗| 漾濞| 天长市| 横峰县| 岗巴县| 石台县| 永春县| 德昌县| 珲春市| 九江县| 建始县| 泰安市| 安仁县| 蒙自县| 广南县| 宝兴县| 垫江县| 新郑市| 永修县| 临夏县|