- Python Deep Learning Cookbook
- Indra den Bakker
- 206字
- 2021-07-02 15:43:13
How to do it...
- First, we install CNTK with pip as follows:
pip install https://cntk.ai/PythonWheel/GPU/cntk-2.2-cp35-cp35m-linux_x86_64.whl
Adjust the wheel file if necessary (see https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-Linux-Python?tabs=cntkpy22).
- After installing CNTK, we can import it into our Python environment:
import cntk
- Let's create some simple dummy data that we can use for training:
import numpy as np
x_input = np.array([[1,2,3,4,5]], np.float32)
y_input = np.array([[10]], np.float32)
- Next, we need to define the placeholders for the input data:
X = cntk.input_variable(5, np.float32)
y = cntk.input_variable(1, np.float32)
- With CNTK, it's straightforward to stack multiple layers. We stack a dense layer with 32 inputs on top of an output layer with 1 output:
from cntk.layers import Dense, Sequential
model = Sequential([Dense(32),
Dense(1)])(X)
- Next, we define the loss function:
loss = cntk.squared_error(model, y)
- Now, we are ready to finalize our model with an optimizer:
learning_rate = 0.001
trainer = cntk.Trainer(model, (loss), cntk.adagrad(model.parameters, learning_rate))
- Finally, we can train our model as follows:
for epoch in range(10):
trainer.train_minibatch({X: x_input, y: y_input})
As we have demonstrated in this introduction, it is straightforward to build models in CNTK with the appropriate high-level wrappers. However, just like TensorFlow and PyTorch, you can choose to implement your model on a more granular level, which gives you a lot of freedom.
推薦閱讀
- Learning Single:page Web Application Development
- 移動UI設(shè)計(微課版)
- 薛定宇教授大講堂(卷Ⅳ):MATLAB最優(yōu)化計算
- C語言從入門到精通(第4版)
- INSTANT Django 1.5 Application Development Starter
- Mastering Xamarin.Forms(Second Edition)
- Python 3 Object:oriented Programming(Second Edition)
- HTML5 Canvas核心技術(shù):圖形、動畫與游戲開發(fā)
- HTML并不簡單:Web前端開發(fā)精進秘籍
- C語言編程魔法書:基于C11標準
- SQL Server 2012數(shù)據(jù)庫管理與開發(fā)(慕課版)
- 零基礎(chǔ)入門Python數(shù)據(jù)分析與機器學習
- Python服務(wù)端測試開發(fā)實戰(zhàn)
- CorelDRAW X6中文版應(yīng)用教程(第二版)
- Learning ClojureScript