- Python Deep Learning Cookbook
- Indra den Bakker
- 206字
- 2021-07-02 15:43:13
How to do it...
- First, we install CNTK with pip as follows:
pip install https://cntk.ai/PythonWheel/GPU/cntk-2.2-cp35-cp35m-linux_x86_64.whl
Adjust the wheel file if necessary (see https://docs.microsoft.com/en-us/cognitive-toolkit/Setup-Linux-Python?tabs=cntkpy22).
- After installing CNTK, we can import it into our Python environment:
import cntk
- Let's create some simple dummy data that we can use for training:
import numpy as np
x_input = np.array([[1,2,3,4,5]], np.float32)
y_input = np.array([[10]], np.float32)
- Next, we need to define the placeholders for the input data:
X = cntk.input_variable(5, np.float32)
y = cntk.input_variable(1, np.float32)
- With CNTK, it's straightforward to stack multiple layers. We stack a dense layer with 32 inputs on top of an output layer with 1 output:
from cntk.layers import Dense, Sequential
model = Sequential([Dense(32),
Dense(1)])(X)
- Next, we define the loss function:
loss = cntk.squared_error(model, y)
- Now, we are ready to finalize our model with an optimizer:
learning_rate = 0.001
trainer = cntk.Trainer(model, (loss), cntk.adagrad(model.parameters, learning_rate))
- Finally, we can train our model as follows:
for epoch in range(10):
trainer.train_minibatch({X: x_input, y: y_input})
As we have demonstrated in this introduction, it is straightforward to build models in CNTK with the appropriate high-level wrappers. However, just like TensorFlow and PyTorch, you can choose to implement your model on a more granular level, which gives you a lot of freedom.
推薦閱讀
- C語言程序設計案例教程(第2版)
- 大學計算機基礎實驗教程
- Apache Spark 2 for Beginners
- 深入淺出Windows API程序設計:編程基礎篇
- 區塊鏈:以太坊DApp開發實戰
- Podman實戰
- Eclipse Plug-in Development:Beginner's Guide(Second Edition)
- SharePoint Development with the SharePoint Framework
- Linux命令行與shell腳本編程大全(第4版)
- 精通MATLAB(第3版)
- Terraform:多云、混合云環境下實現基礎設施即代碼(第2版)
- 快速入門與進階:Creo 4·0全實例精講
- C++從入門到精通(第6版)
- Arduino電子設計實戰指南:零基礎篇
- Python Web自動化測試設計與實現