官术网_书友最值得收藏!

Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks

This chapter focuses on technical solutions to set up popular deep learning frameworks. First, we provide solutions to set up a stable and flexible environment on local machines and with cloud solutions. Next, all popular Python deep learning frameworks are discussed in detail:

  • Setting up a deep learning environment
  • Launching an instance on Amazon Web Services (AWS)
  • Launching an instance on Google Cloud Platform (GCP)
  • Installing CUDA and cuDNN
  • Installing Anaconda and libraries
  • Connecting with Jupyter Notebook on a server
  • Building state-of-the-art, production-ready models with TensorFlow
  • Intuitively building networks with Keras
  • Using PyTorch's dynamic computation graphs for RNNs
  • Implementing high-performance models with CNTK
  • Building efficient models with MXNet
  • Defining networks using simple and efficient code with Gluon
主站蜘蛛池模板: 德州市| 莱州市| 樟树市| 镇康县| 旅游| 利川市| 玉树县| 武城县| 涿州市| 临沭县| 邹平县| 册亨县| 浦县| 海安县| 建始县| 肥东县| 长海县| 潼关县| 镇江市| 澄城县| 浦江县| 交口县| 胶州市| 北碚区| 阳东县| 梧州市| 临泽县| 论坛| 通辽市| 东乌珠穆沁旗| 麻城市| 栾川县| 阳新县| 克东县| 金坛市| 灌云县| 普洱| 普安县| 遂昌县| 安顺市| 班玛县|