官术网_书友最值得收藏!

Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks

This chapter focuses on technical solutions to set up popular deep learning frameworks. First, we provide solutions to set up a stable and flexible environment on local machines and with cloud solutions. Next, all popular Python deep learning frameworks are discussed in detail:

  • Setting up a deep learning environment
  • Launching an instance on Amazon Web Services (AWS)
  • Launching an instance on Google Cloud Platform (GCP)
  • Installing CUDA and cuDNN
  • Installing Anaconda and libraries
  • Connecting with Jupyter Notebook on a server
  • Building state-of-the-art, production-ready models with TensorFlow
  • Intuitively building networks with Keras
  • Using PyTorch's dynamic computation graphs for RNNs
  • Implementing high-performance models with CNTK
  • Building efficient models with MXNet
  • Defining networks using simple and efficient code with Gluon
主站蜘蛛池模板: 禄丰县| 宁远县| 临湘市| 泉州市| 黄石市| 宕昌县| 拜城县| 营口市| 汝阳县| 青阳县| 潢川县| 都匀市| 江永县| 邳州市| 高碑店市| 苍山县| 孟州市| 永城市| 富民县| 河南省| 固安县| 治多县| 云龙县| 德兴市| 海盐县| 响水县| 太仆寺旗| 沽源县| 思茅市| 四子王旗| 浪卡子县| 昆山市| 江北区| 页游| 桐梓县| 宝山区| 体育| 铜梁县| 黄骅市| 昭平县| 哈密市|