- Practical Data Wrangling
- Allan Visochek
- 124字
- 2021-07-02 15:16:04
Cleaning data
When working with data, you can generally expect to find human errors, missing entries, and numerical outliers. These types of errors usually need to be corrected, handled, or removed to prepare a dataset for analysis.
In Chapter 5, Manipulating Text Data - An Introduction to Regular Expressions, I will demonstrate how to use regular expressions, a tool to identify, extract, and modify patterns in text data. Chapter 5, Manipulating Text Data - An Introduction to Regular Expressions, includes a project to use regular expressions to extract street names.
In Chapter 6, Cleaning Numerical Data - An Introduction to R and Rstudio, I will demonstrate how to use RStudio to conduct two common tasks for cleaning numerical data: outlier detection and NA handling.
- 電氣自動化專業英語(第3版)
- 繪制進程圖:可視化D++語言(第1冊)
- Java編程全能詞典
- 大學計算機基礎:基礎理論篇
- Mastering Spark for Data Science
- 工業機器人產品應用實戰
- Getting Started with Clickteam Fusion
- Learning Apache Cassandra(Second Edition)
- MCSA Windows Server 2016 Certification Guide:Exam 70-741
- Mastering Elastic Stack
- 21天學通ASP.NET
- 計算機網絡技術基礎
- AutoCAD 2012中文版繪圖設計高手速成
- 變頻器、軟啟動器及PLC實用技術260問
- 工業機器人應用案例集錦