- Feature Engineering Made Easy
- Sinan Ozdemir Divya Susarla
- 98字
- 2021-06-25 22:45:50
Unsupervised learning
Supervised learning is all about making predictions. We utilize features of the data and use them to make informative predictions about the response of the data. If we aren’t making predictions by exploring structure, we are attempting to extract structure from our data. We generally do so by applying mathematical transformations to numerical matrix representations of data or iterative procedures to obtain new sets of features.
This concept can be a bit more difficult to grasp than supervised learning, and so I will present a motivating example to help elucidate how this all works.
推薦閱讀
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn):從新手小白到數(shù)據(jù)科學(xué)家
- 在你身邊為你設(shè)計(jì)Ⅲ:騰訊服務(wù)設(shè)計(jì)思維與實(shí)戰(zhàn)
- 大數(shù)據(jù)技術(shù)基礎(chǔ)
- Google Visualization API Essentials
- Oracle RAC 11g實(shí)戰(zhàn)指南
- Python廣告數(shù)據(jù)挖掘與分析實(shí)戰(zhàn)
- Python數(shù)據(jù)分析、挖掘與可視化從入門(mén)到精通
- 云計(jì)算服務(wù)保障體系
- Mockito Cookbook
- 大數(shù)據(jù)架構(gòu)和算法實(shí)現(xiàn)之路:電商系統(tǒng)的技術(shù)實(shí)戰(zhàn)
- Learning Proxmox VE
- Flutter Projects
- 重復(fù)數(shù)據(jù)刪除技術(shù):面向大數(shù)據(jù)管理的縮減技術(shù)
- INSTANT Android Fragmentation Management How-to
- 跨領(lǐng)域信息交換方法與技術(shù)(第二版)