官术网_书友最值得收藏!

Using the TFLearn Model

Use the trained model to predict or evaluate:

score = model.evaluate(X_test, Y_test)
print('Test accuracy:', score[0])

The complete code for the TFLearn MNIST classification example is provided in the notebook ch-02_TF_High_Level_LibrariesThe output from the TFLearn MNIST example is as follows:

Training Step: 5499  | total loss: 0.42119 | time: 1.817s
| Adam | epoch: 010 | loss: 0.42119 - acc: 0.8860 -- iter: 54900/55000
Training Step: 5500  | total loss: 0.40881 | time: 1.820s
| Adam | epoch: 010 | loss: 0.40881 - acc: 0.8854 -- iter: 55000/55000
--
Test accuracy: 0.9029

You can get more information about TFLearn from the following link: http://tflearn.org/.

主站蜘蛛池模板: 长海县| 淳化县| 萝北县| 长海县| 冀州市| 临洮县| 扎赉特旗| 桃江县| 长武县| 瑞金市| 吉木乃县| 读书| 尼勒克县| 耒阳市| 信宜市| 婺源县| 定日县| 博兴县| 太谷县| 霸州市| 会宁县| 皮山县| 凌海市| 乌恰县| 万荣县| 诏安县| 犍为县| 老河口市| 汉寿县| 广河县| 广丰县| 平阳县| 昆山市| 久治县| 伊金霍洛旗| 北流市| 旌德县| 利津县| 扶绥县| 瑞安市| 高邮市|