官术网_书友最值得收藏!

Using the TFLearn Model

Use the trained model to predict or evaluate:

score = model.evaluate(X_test, Y_test)
print('Test accuracy:', score[0])

The complete code for the TFLearn MNIST classification example is provided in the notebook ch-02_TF_High_Level_LibrariesThe output from the TFLearn MNIST example is as follows:

Training Step: 5499  | total loss: 0.42119 | time: 1.817s
| Adam | epoch: 010 | loss: 0.42119 - acc: 0.8860 -- iter: 54900/55000
Training Step: 5500  | total loss: 0.40881 | time: 1.820s
| Adam | epoch: 010 | loss: 0.40881 - acc: 0.8854 -- iter: 55000/55000
--
Test accuracy: 0.9029

You can get more information about TFLearn from the following link: http://tflearn.org/.

主站蜘蛛池模板: 化隆| 咸阳市| 改则县| 海阳市| 湄潭县| 库车县| 高清| 曲阳县| 泸溪县| 竹山县| 尼玛县| 安阳县| 东阿县| 新余市| 潜江市| 明光市| 新巴尔虎右旗| 那曲县| 苗栗市| 海晏县| 合作市| 上思县| 汤原县| 阿拉善盟| 兴义市| 如东县| 惠东县| 萝北县| 田东县| 彩票| 瑞丽市| 金坛市| 大关县| 宝坻区| 淅川县| 峨边| 贵溪市| 南宁市| 庆城县| 博野县| 饶河县|