- Mastering TensorFlow 1.x
- Armando Fandango
- 108字
- 2021-06-25 22:51:01
Using the TFLearn Model
Use the trained model to predict or evaluate:
score = model.evaluate(X_test, Y_test)
print('Test accuracy:', score[0])
The complete code for the TFLearn MNIST classification example is provided in the notebook ch-02_TF_High_Level_Libraries. The output from the TFLearn MNIST example is as follows:
Training Step: 5499 | total loss: 0.42119 | time: 1.817s | Adam | epoch: 010 | loss: 0.42119 - acc: 0.8860 -- iter: 54900/55000 Training Step: 5500 | total loss: 0.40881 | time: 1.820s | Adam | epoch: 010 | loss: 0.40881 - acc: 0.8854 -- iter: 55000/55000 -- Test accuracy: 0.9029
You can get more information about TFLearn from the following link: http://tflearn.org/.
推薦閱讀
- 筆記本電腦使用、維護與故障排除實戰
- 新媒體跨界交互設計
- 零點起飛學Xilinx FPG
- 極簡Spring Cloud實戰
- Creating Dynamic UI with Android Fragments
- 基于ARM的嵌入式系統和物聯網開發
- 硬件產品經理手冊:手把手構建智能硬件產品
- Learning Game Physics with Bullet Physics and OpenGL
- 基于Proteus仿真的51單片機應用
- 筆記本電腦維修實踐教程
- FPGA實戰訓練精粹
- 計算機組裝與維護(慕課版)
- Zabbix 4 Network Monitoring
- 基于S5PV210處理器的嵌入式開發完全攻略
- 計算機組裝與維護立體化教程(微課版)