官术网_书友最值得收藏!

Using the TFLearn Model

Use the trained model to predict or evaluate:

score = model.evaluate(X_test, Y_test)
print('Test accuracy:', score[0])

The complete code for the TFLearn MNIST classification example is provided in the notebook ch-02_TF_High_Level_LibrariesThe output from the TFLearn MNIST example is as follows:

Training Step: 5499  | total loss: 0.42119 | time: 1.817s
| Adam | epoch: 010 | loss: 0.42119 - acc: 0.8860 -- iter: 54900/55000
Training Step: 5500  | total loss: 0.40881 | time: 1.820s
| Adam | epoch: 010 | loss: 0.40881 - acc: 0.8854 -- iter: 55000/55000
--
Test accuracy: 0.9029

You can get more information about TFLearn from the following link: http://tflearn.org/.

主站蜘蛛池模板: 独山县| 青铜峡市| 沙雅县| 鲁甸县| 兴宁市| 栾川县| 兰溪市| 扎囊县| 天台县| 徐闻县| 东阿县| 耿马| 西安市| 长兴县| 宁阳县| 囊谦县| 根河市| 浪卡子县| 沂水县| 拉孜县| 盖州市| 乐业县| 镇巴县| 杭锦后旗| 靖西县| 日照市| 来安县| 启东市| 崇义县| 定边县| 井研县| 万荣县| 铜山县| 古交市| 朝阳区| 肃北| 霍城县| 麦盖提县| 仲巴县| 遂溪县| 安福县|