- Mastering TensorFlow 1.x
- Armando Fandango
- 108字
- 2021-06-25 22:51:01
Using the TFLearn Model
Use the trained model to predict or evaluate:
score = model.evaluate(X_test, Y_test)
print('Test accuracy:', score[0])
The complete code for the TFLearn MNIST classification example is provided in the notebook ch-02_TF_High_Level_Libraries. The output from the TFLearn MNIST example is as follows:
Training Step: 5499 | total loss: 0.42119 | time: 1.817s | Adam | epoch: 010 | loss: 0.42119 - acc: 0.8860 -- iter: 54900/55000 Training Step: 5500 | total loss: 0.40881 | time: 1.820s | Adam | epoch: 010 | loss: 0.40881 - acc: 0.8854 -- iter: 55000/55000 -- Test accuracy: 0.9029
You can get more information about TFLearn from the following link: http://tflearn.org/.
推薦閱讀
- 24小時學會電腦組裝與維護
- 零點起飛學Xilinx FPG
- 顯卡維修知識精解
- 新型電腦主板關鍵電路維修圖冊
- Mastering Delphi Programming:A Complete Reference Guide
- 現代辦公設備使用與維護
- AMD FPGA設計優化寶典:面向Vivado/SystemVerilog
- Hands-On Machine Learning with C#
- Practical Machine Learning with R
- Creating Flat Design Websites
- 基于PROTEUS的電路設計、仿真與制板
- Arduino項目開發:智能生活
- 可編程邏輯器件項目開發設計
- 計算機組裝與維護(慕課版)
- The Deep Learning with PyTorch Workshop