- Mastering TensorFlow 1.x
- Armando Fandango
- 108字
- 2021-06-25 22:51:01
Using the TFLearn Model
Use the trained model to predict or evaluate:
score = model.evaluate(X_test, Y_test)
print('Test accuracy:', score[0])
The complete code for the TFLearn MNIST classification example is provided in the notebook ch-02_TF_High_Level_Libraries. The output from the TFLearn MNIST example is as follows:
Training Step: 5499 | total loss: 0.42119 | time: 1.817s | Adam | epoch: 010 | loss: 0.42119 - acc: 0.8860 -- iter: 54900/55000 Training Step: 5500 | total loss: 0.40881 | time: 1.820s | Adam | epoch: 010 | loss: 0.40881 - acc: 0.8854 -- iter: 55000/55000 -- Test accuracy: 0.9029
You can get more information about TFLearn from the following link: http://tflearn.org/.
推薦閱讀
- Intel FPGA/CPLD設計(基礎篇)
- 新媒體跨界交互設計
- Applied Unsupervised Learning with R
- Svelte 3 Up and Running
- 計算機組裝與維修技術
- SiFive 經典RISC-V FE310微控制器原理與實踐
- Building 3D Models with modo 701
- 筆記本電腦使用、維護與故障排除從入門到精通(第5版)
- Blender Quick Start Guide
- 微型計算機系統原理及應用:國產龍芯處理器的軟件和硬件集成(基礎篇)
- Neural Network Programming with Java(Second Edition)
- 基于PROTEUS的電路設計、仿真與制板
- 數字媒體專業英語(第2版)
- FL Studio Cookbook
- 3D Printing Blueprints