官术网_书友最值得收藏!

TFLearn estimator layers

TFLearn offers only one layer in the tflearn.layers.estimator module:

While creating the regression layer, you can specify the optimizer and the loss and metric functions.

TFLearn offers the following optimizer functions as classes in the tflearn.optimizers module:

  • SGD
  • RMSprop
  • Adam
  • Momentum
  • AdaGrad
  • Ftrl
  • AdaDelta
  • ProximalAdaGrad
  • Nesterov

You can create custom optimizers by extending the tflearn.optimizers.Optimizer base class.

TFLearn offers the following metric functions as classes or ops in the tflearn.metrics module:

  • Accuracy or  accuracy_op
  • Top_k or top_k_op
  • R2 or r2_op
  • WeightedR2  or weighted_r2_op
  • binary_accuracy_op

You can create custom metrics by extending the tflearn.metrics.Metric base class.

TFLearn provides the following loss functions, known as objectives, in the tflearn.objectives module:

  • softymax_categorical_crossentropy
  • categorical_crossentropy
  • binary_crossentropy
  • weighted_crossentropy
  • mean_square
  • hinge_loss
  • roc_auc_score
  • weak_cross_entropy_2d

While specifying the input, hidden, and output layers, you can specify the activation functions to be applied to the output. TFLearn provides the following activation functions in the tflearn.activations module:

  • linear
  • tanh
  • sigmoid
  • softmax
  • softplus
  • softsign
  • relu
  • relu6
  • leaky_relu
  • prelu
  • elu
  • crelu
  • selu
主站蜘蛛池模板: 革吉县| 贺兰县| 农安县| 东乡族自治县| 永泰县| 房产| 香格里拉县| 黄龙县| 衡山县| 灵寿县| 卢氏县| 平定县| 太白县| 凤台县| 行唐县| 江川县| 龙井市| 阳原县| 井研县| 河北省| 岳阳县| 黄骅市| 九龙坡区| 乐山市| 奇台县| 饶阳县| 东山县| 威海市| 沂源县| 金堂县| 班玛县| 江川县| 渝北区| 文登市| 桐庐县| 洞头县| 海淀区| 隆林| 大悟县| 日照市| 图木舒克市|