官术网_书友最值得收藏!

TFLearn estimator layers

TFLearn offers only one layer in the tflearn.layers.estimator module:

While creating the regression layer, you can specify the optimizer and the loss and metric functions.

TFLearn offers the following optimizer functions as classes in the tflearn.optimizers module:

  • SGD
  • RMSprop
  • Adam
  • Momentum
  • AdaGrad
  • Ftrl
  • AdaDelta
  • ProximalAdaGrad
  • Nesterov

You can create custom optimizers by extending the tflearn.optimizers.Optimizer base class.

TFLearn offers the following metric functions as classes or ops in the tflearn.metrics module:

  • Accuracy or  accuracy_op
  • Top_k or top_k_op
  • R2 or r2_op
  • WeightedR2  or weighted_r2_op
  • binary_accuracy_op

You can create custom metrics by extending the tflearn.metrics.Metric base class.

TFLearn provides the following loss functions, known as objectives, in the tflearn.objectives module:

  • softymax_categorical_crossentropy
  • categorical_crossentropy
  • binary_crossentropy
  • weighted_crossentropy
  • mean_square
  • hinge_loss
  • roc_auc_score
  • weak_cross_entropy_2d

While specifying the input, hidden, and output layers, you can specify the activation functions to be applied to the output. TFLearn provides the following activation functions in the tflearn.activations module:

  • linear
  • tanh
  • sigmoid
  • softmax
  • softplus
  • softsign
  • relu
  • relu6
  • leaky_relu
  • prelu
  • elu
  • crelu
  • selu
主站蜘蛛池模板: 德令哈市| 梁平县| 鹤庆县| 乐陵市| 辽源市| 越西县| 新余市| 伽师县| 瓦房店市| 若羌县| 宁晋县| 读书| 繁昌县| 沙坪坝区| 潞西市| 宕昌县| 同心县| 贵州省| 内乡县| 安仁县| 永川市| 休宁县| 临清市| 漠河县| 兴山县| 丹阳市| 澎湖县| 东阿县| 黔东| 揭阳市| 乃东县| 柞水县| 宣城市| 高青县| 大连市| 武安市| 腾冲县| 运城市| 定远县| 若尔盖县| 安远县|