官术网_书友最值得收藏!

TFLearn estimator layers

TFLearn offers only one layer in the tflearn.layers.estimator module:

While creating the regression layer, you can specify the optimizer and the loss and metric functions.

TFLearn offers the following optimizer functions as classes in the tflearn.optimizers module:

  • SGD
  • RMSprop
  • Adam
  • Momentum
  • AdaGrad
  • Ftrl
  • AdaDelta
  • ProximalAdaGrad
  • Nesterov

You can create custom optimizers by extending the tflearn.optimizers.Optimizer base class.

TFLearn offers the following metric functions as classes or ops in the tflearn.metrics module:

  • Accuracy or  accuracy_op
  • Top_k or top_k_op
  • R2 or r2_op
  • WeightedR2  or weighted_r2_op
  • binary_accuracy_op

You can create custom metrics by extending the tflearn.metrics.Metric base class.

TFLearn provides the following loss functions, known as objectives, in the tflearn.objectives module:

  • softymax_categorical_crossentropy
  • categorical_crossentropy
  • binary_crossentropy
  • weighted_crossentropy
  • mean_square
  • hinge_loss
  • roc_auc_score
  • weak_cross_entropy_2d

While specifying the input, hidden, and output layers, you can specify the activation functions to be applied to the output. TFLearn provides the following activation functions in the tflearn.activations module:

  • linear
  • tanh
  • sigmoid
  • softmax
  • softplus
  • softsign
  • relu
  • relu6
  • leaky_relu
  • prelu
  • elu
  • crelu
  • selu
主站蜘蛛池模板: 彰化市| 遵义县| 郧西县| 霍城县| 吴忠市| 新田县| 迁西县| 富平县| 罗平县| 平舆县| 延安市| 蛟河市| 吉首市| 太和县| 望都县| 霍山县| 民权县| 稻城县| 北海市| 雅安市| 祥云县| 江北区| 安西县| 格尔木市| 望都县| 图木舒克市| 石柱| 当涂县| 静宁县| 崇阳县| 南投市| 莱阳市| 宣武区| 昭平县| 古浪县| 陵川县| 芜湖县| 江城| 沂南县| 六盘水市| 阜康市|