官术网_书友最值得收藏!

TFLearn estimator layers

TFLearn offers only one layer in the tflearn.layers.estimator module:

While creating the regression layer, you can specify the optimizer and the loss and metric functions.

TFLearn offers the following optimizer functions as classes in the tflearn.optimizers module:

  • SGD
  • RMSprop
  • Adam
  • Momentum
  • AdaGrad
  • Ftrl
  • AdaDelta
  • ProximalAdaGrad
  • Nesterov

You can create custom optimizers by extending the tflearn.optimizers.Optimizer base class.

TFLearn offers the following metric functions as classes or ops in the tflearn.metrics module:

  • Accuracy or  accuracy_op
  • Top_k or top_k_op
  • R2 or r2_op
  • WeightedR2  or weighted_r2_op
  • binary_accuracy_op

You can create custom metrics by extending the tflearn.metrics.Metric base class.

TFLearn provides the following loss functions, known as objectives, in the tflearn.objectives module:

  • softymax_categorical_crossentropy
  • categorical_crossentropy
  • binary_crossentropy
  • weighted_crossentropy
  • mean_square
  • hinge_loss
  • roc_auc_score
  • weak_cross_entropy_2d

While specifying the input, hidden, and output layers, you can specify the activation functions to be applied to the output. TFLearn provides the following activation functions in the tflearn.activations module:

  • linear
  • tanh
  • sigmoid
  • softmax
  • softplus
  • softsign
  • relu
  • relu6
  • leaky_relu
  • prelu
  • elu
  • crelu
  • selu
主站蜘蛛池模板: 团风县| 遂昌县| 义马市| 延长县| 绿春县| 望谟县| 黔江区| 涞水县| 霍城县| 西华县| 湖口县| 芮城县| 大厂| 西峡县| 平山县| 醴陵市| 秀山| 伊通| 德州市| 台中市| 邓州市| 都江堰市| 平和县| 平安县| 农安县| 东台市| 泽库县| 阳原县| 龙南县| 津市市| 贡嘎县| 横山县| 元朗区| 堆龙德庆县| 木兰县| 广昌县| 清河县| 高淳县| 嘉善县| 桦川县| 泰兴市|