- Mastering TensorFlow 1.x
- Armando Fandango
- 94字
- 2021-06-25 22:50:57
Soft placement
When you place a TensorFlow operation on the GPU, the TF must have the GPU implementation of that operation, known as the kernel. If the kernel is not present then the placement results in run-time error. Also if the GPU device you requested does not exist, you will get a run-time error. The best way to handle such errors is to allow the operation to be placed on the CPU if requesting the GPU device results in n error. This can be achieved by setting the following config value:
config.allow_soft_placement = True
推薦閱讀
- Learning AngularJS Animations
- Deep Learning with PyTorch
- 基于ARM的嵌入式系統和物聯網開發
- Intel FPGA/CPLD設計(高級篇)
- AMD FPGA設計優化寶典:面向Vivado/SystemVerilog
- Artificial Intelligence Business:How you can profit from AI
- 電腦維護365問
- 計算機維修與維護技術速成
- 嵌入式系統中的模擬電路設計
- 微型計算機系統原理及應用:國產龍芯處理器的軟件和硬件集成(基礎篇)
- Intel Edison智能硬件開發指南:基于Yocto Project
- Wireframing Essentials
- Hands-On Motion Graphics with Adobe After Effects CC
- Istio實戰指南
- 可編程邏輯器件項目開發設計