- Mastering TensorFlow 1.x
- Armando Fandango
- 94字
- 2021-06-25 22:50:57
Soft placement
When you place a TensorFlow operation on the GPU, the TF must have the GPU implementation of that operation, known as the kernel. If the kernel is not present then the placement results in run-time error. Also if the GPU device you requested does not exist, you will get a run-time error. The best way to handle such errors is to allow the operation to be placed on the CPU if requesting the GPU device results in n error. This can be achieved by setting the following config value:
config.allow_soft_placement = True
推薦閱讀
- 24小時學會電腦組裝與維護
- 網絡服務器配置與管理(第3版)
- The Applied AI and Natural Language Processing Workshop
- micro:bit魔法修煉之Mpython初體驗
- 從零開始學51單片機C語言
- Hands-On Machine Learning with C#
- Visual Media Processing Using Matlab Beginner's Guide
- 電腦高級維修及故障排除實戰
- Building 3D Models with modo 701
- Blender Game Engine:Beginner's Guide
- 單片機原理及應用:基于C51+Proteus仿真
- Intel FPGA權威設計指南:基于Quartus Prime Pro 19集成開發環境
- FPGA實驗實訓教程
- 計算機組成技術教程
- UML精粹:標準對象建模語言簡明指南(第3版)