- Mastering TensorFlow 1.x
- Armando Fandango
- 247字
- 2021-06-25 22:50:55
Placeholders
While constants allow us to provide a value at the time of defining the tensor, the placeholders allow us to create tensors whose values can be provided at runtime. TensorFlow provides the tf.placeholder() function with the following signature to create placeholders:
tf.placeholder(
dtype,
shape=None,
name=None
)
As an example, let's create two placeholders and print them:
p1 = tf.placeholder(tf.float32)
p2 = tf.placeholder(tf.float32)
print('p1 : ', p1)
print('p2 : ', p2)
We see the following output:
p1 : Tensor("Placeholder:0", dtype=float32)
p2 : Tensor("Placeholder_1:0", dtype=float32)
Now let's define an operation using these placeholders:
op4 = p1 * p2
TensorFlow allows using shorthand symbols for various operations. In the earlier example, p1 * p2 is shorthand for tf.multiply(p1,p2):
print('run(op4,{p1:2.0, p2:3.0}) : ',tfs.run(op4,{p1:2.0, p2:3.0}))
The preceding command runs the op4 in the TensorFlow Session, feeding the Python dictionary (the second argument to the run() operation) with values for p1 and p2.
The output is as follows:
run(op4,{p1:2.0, p2:3.0}) : 6.0
We can also specify the dictionary using the feed_dict parameter in the run() operation:
print('run(op4,feed_dict = {p1:3.0, p2:4.0}) : ',
tfs.run(op4, feed_dict={p1: 3.0, p2: 4.0}))
The output is as follows:
run(op4,feed_dict = {p1:3.0, p2:4.0}) : 12.0
Let's look at one last example, with a vector being fed to the same operation:
print('run(op4,feed_dict = {p1:[2.0,3.0,4.0], p2:[3.0,4.0,5.0]}) : ',
tfs.run(op4,feed_dict = {p1:[2.0,3.0,4.0], p2:[3.0,4.0,5.0]}))
The output is as follows:
run(op4,feed_dict={p1:[2.0,3.0,4.0],p2:[3.0,4.0,5.0]}):[ 6. 12. 20.]
The elements of the two input vectors are multiplied in an element-wise fashion.
- 網(wǎng)絡(luò)服務(wù)器配置與管理(第3版)
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- Applied Unsupervised Learning with R
- 計算機組裝與系統(tǒng)配置
- SDL Game Development
- 深入淺出SSD:固態(tài)存儲核心技術(shù)、原理與實戰(zhàn)
- 現(xiàn)代辦公設(shè)備使用與維護
- VCD、DVD原理與維修
- Mastering Adobe Photoshop Elements
- Intel Edison智能硬件開發(fā)指南:基于Yocto Project
- LPC1100系列處理器原理及應(yīng)用
- 單片機原理及應(yīng)用:基于C51+Proteus仿真
- 觸摸屏應(yīng)用技術(shù)從入門到精通
- 計算機組裝、維護與維修項目教程
- The Reinforcement Learning Workshop