官术网_书友最值得收藏!

Constants

The constant valued tensors are created using the tf.constant() function that has the following signature:

tf.constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)

Let's look at the example code provided in the Jupyter Notebook with this book:

c1=tf.constant(5,name='x')
c2=tf.constant(6.0,name='y')
c3=tf.constant(7.0,tf.float32,name='z')

Let's look into the code in detail:

  • The first line defines a constant tensor c1, gives it value 5, and names it x.  
  • The second line defines a constant tensor c2, stores value 6.0, and names it y.
  • When we print these tensors, we see that the data types of c1 and c2 are automatically deduced by TensorFlow.
  • To specifically define a data type, we can use the dtype parameter or place the data type as the second argument. In the preceding code example, we define the data type as tf.float32 for c3.

Let's print the constants c1, c2, and c3:

print('c1 (x): ',c1)
print('c2 (y): ',c2)
print('c3 (z): ',c3)

When we print these constants, we get the following output:

c1 (x):  Tensor("x:0", shape=(), dtype=int32)
c2 (y): Tensor("y:0", shape=(), dtype=float32)
c3 (z): Tensor("z:0", shape=(), dtype=float32)

In order to print the values of these constants, we have to execute them in a TensorFlow session with the tfs.run() command:

print('run([c1,c2,c3]) : ',tfs.run([c1,c2,c3]))

We see the following output:

run([c1,c2,c3]) :  [5, 6.0, 7.0]
主站蜘蛛池模板: 泽普县| 苍溪县| 麻江县| 民权县| 天峻县| 惠来县| 临沭县| 萨嘎县| 大悟县| 大石桥市| 瑞昌市| 阿拉尔市| 香港 | 吉安市| 合肥市| 岳池县| 道真| 贵定县| 中宁县| 伊通| 大石桥市| 墨竹工卡县| 乐昌市| 鹤庆县| 抚顺市| 佳木斯市| 安仁县| 奉化市| 托克托县| 汾西县| 竹北市| 德惠市| 龙里县| 资溪县| 资中县| 潢川县| 永仁县| 丽水市| 石嘴山市| 文山县| 新干县|