官术网_书友最值得收藏!

Constants

The constant valued tensors are created using the tf.constant() function that has the following signature:

tf.constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)

Let's look at the example code provided in the Jupyter Notebook with this book:

c1=tf.constant(5,name='x')
c2=tf.constant(6.0,name='y')
c3=tf.constant(7.0,tf.float32,name='z')

Let's look into the code in detail:

  • The first line defines a constant tensor c1, gives it value 5, and names it x.  
  • The second line defines a constant tensor c2, stores value 6.0, and names it y.
  • When we print these tensors, we see that the data types of c1 and c2 are automatically deduced by TensorFlow.
  • To specifically define a data type, we can use the dtype parameter or place the data type as the second argument. In the preceding code example, we define the data type as tf.float32 for c3.

Let's print the constants c1, c2, and c3:

print('c1 (x): ',c1)
print('c2 (y): ',c2)
print('c3 (z): ',c3)

When we print these constants, we get the following output:

c1 (x):  Tensor("x:0", shape=(), dtype=int32)
c2 (y): Tensor("y:0", shape=(), dtype=float32)
c3 (z): Tensor("z:0", shape=(), dtype=float32)

In order to print the values of these constants, we have to execute them in a TensorFlow session with the tfs.run() command:

print('run([c1,c2,c3]) : ',tfs.run([c1,c2,c3]))

We see the following output:

run([c1,c2,c3]) :  [5, 6.0, 7.0]
主站蜘蛛池模板: 六枝特区| 安化县| 历史| 招远市| 大埔县| 开江县| 肇庆市| 义马市| 郯城县| 通许县| 邹城市| 寿阳县| 财经| 山丹县| 蒙自县| 闸北区| 佛山市| 奉新县| 台北县| 海安县| 沅陵县| 东乡| 崇仁县| 华蓥市| 香港| 广东省| 双峰县| 体育| 哈密市| 吕梁市| 沈丘县| 大悟县| 都昌县| 临桂县| 鄯善县| 富川| 区。| 克什克腾旗| 宝丰县| 长沙市| 即墨市|