- Mastering TensorFlow 1.x
- Armando Fandango
- 216字
- 2021-06-25 22:50:54
Constants
The constant valued tensors are created using the tf.constant() function that has the following signature:
tf.constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)
Let's look at the example code provided in the Jupyter Notebook with this book:
c1=tf.constant(5,name='x')
c2=tf.constant(6.0,name='y')
c3=tf.constant(7.0,tf.float32,name='z')
Let's look into the code in detail:
- The first line defines a constant tensor c1, gives it value 5, and names it x.
- The second line defines a constant tensor c2, stores value 6.0, and names it y.
- When we print these tensors, we see that the data types of c1 and c2 are automatically deduced by TensorFlow.
- To specifically define a data type, we can use the dtype parameter or place the data type as the second argument. In the preceding code example, we define the data type as tf.float32 for c3.
Let's print the constants c1, c2, and c3:
print('c1 (x): ',c1)
print('c2 (y): ',c2)
print('c3 (z): ',c3)
When we print these constants, we get the following output:
c1 (x): Tensor("x:0", shape=(), dtype=int32)
c2 (y): Tensor("y:0", shape=(), dtype=float32)
c3 (z): Tensor("z:0", shape=(), dtype=float32)
In order to print the values of these constants, we have to execute them in a TensorFlow session with the tfs.run() command:
print('run([c1,c2,c3]) : ',tfs.run([c1,c2,c3]))
We see the following output:
run([c1,c2,c3]) : [5, 6.0, 7.0]
推薦閱讀
- 新媒體跨界交互設計
- Cortex-M3 + μC/OS-II嵌入式系統開發入門與應用
- 電腦維護365問
- scikit-learn:Machine Learning Simplified
- 微軟互聯網信息服務(IIS)最佳實踐 (微軟技術開發者叢書)
- Rapid BeagleBoard Prototyping with MATLAB and Simulink
- 微型計算機系統原理及應用:國產龍芯處理器的軟件和硬件集成(基礎篇)
- 基于Proteus仿真的51單片機應用
- Spring Cloud微服務和分布式系統實踐
- 單片微機原理及應用
- 筆記本電腦芯片級維修從入門到精通(圖解版)
- STM32自學筆記
- IP網絡視頻傳輸:技術、標準和應用
- 基于網絡化教學的項目化單片機應用技術
- 嵌入式系統原理及應用:基于ARM Cortex-M4體系結構