官术网_书友最值得收藏!

Constants

The constant valued tensors are created using the tf.constant() function that has the following signature:

tf.constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)

Let's look at the example code provided in the Jupyter Notebook with this book:

c1=tf.constant(5,name='x')
c2=tf.constant(6.0,name='y')
c3=tf.constant(7.0,tf.float32,name='z')

Let's look into the code in detail:

  • The first line defines a constant tensor c1, gives it value 5, and names it x.  
  • The second line defines a constant tensor c2, stores value 6.0, and names it y.
  • When we print these tensors, we see that the data types of c1 and c2 are automatically deduced by TensorFlow.
  • To specifically define a data type, we can use the dtype parameter or place the data type as the second argument. In the preceding code example, we define the data type as tf.float32 for c3.

Let's print the constants c1, c2, and c3:

print('c1 (x): ',c1)
print('c2 (y): ',c2)
print('c3 (z): ',c3)

When we print these constants, we get the following output:

c1 (x):  Tensor("x:0", shape=(), dtype=int32)
c2 (y): Tensor("y:0", shape=(), dtype=float32)
c3 (z): Tensor("z:0", shape=(), dtype=float32)

In order to print the values of these constants, we have to execute them in a TensorFlow session with the tfs.run() command:

print('run([c1,c2,c3]) : ',tfs.run([c1,c2,c3]))

We see the following output:

run([c1,c2,c3]) :  [5, 6.0, 7.0]
主站蜘蛛池模板: 凤庆县| 长宁区| 绩溪县| 丹凤县| 舞阳县| 陇川县| 兴安盟| 铅山县| 临邑县| 即墨市| 龙海市| 辉南县| 辉南县| 和平区| 台北县| 博罗县| 平原县| 南皮县| 久治县| 松溪县| 迭部县| 梨树县| 郸城县| 余姚市| 山阳县| 三明市| 太康县| 壤塘县| 邢台县| 大新县| 达日县| 河曲县| 西峡县| 普安县| 穆棱市| 莒南县| 株洲县| 镇宁| 吴堡县| 方山县| 邮箱|