官术网_书友最值得收藏!

  • Deep Learning Essentials
  • Wei Di Anurag Bhardwaj Jianing Wei
  • 156字
  • 2021-06-30 19:17:55

Automatic differentiation

TensorFlow provides a very convenient API that can help us to directly derive the deltas and update the network parameters:

# Define the cost as the square of the errors
cost = tf.square(error)

# The Gradient Descent Optimizer will do the heavy lifting
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# Define the function we want to approximate
def linear_fun(x):
y = x[:,0] * 2 + x[:,1] * 4 + 1
return y.reshape(y.shape[0],1)

# Other variables during learning
train_batch_size = 100
test_batch_size = 50

# Normal TensorFlow - initialize values, create a session and run the model
sess = tf.Session()
sess.run(tf.initialize_all_variables())

for i in range(1000):
x_value = np.random.rand(train_batch_size,2)
y_value = linear_fun(x_value)
sess.run(optimizer, feed_dict={a_0:x_value, y: y_value})
if i % 100 == 0:
test_x = np.random.rand(test_batch_size,2)
res_val = sess.run(res, feed_dict =
{a_0: test_x, y: linear_fun(test_x)})
print res_val

In addition to this basic setting, let’s now talk about a few important concepts you might encounter in practice.

主站蜘蛛池模板: 沅江市| 东辽县| 北流市| 沾化县| 清涧县| 莱阳市| 宜川县| 鲜城| 平湖市| 新密市| 通河县| 兴国县| 木兰县| 辛集市| 霍州市| 沽源县| 巨鹿县| 务川| 白山市| 凤阳县| 大洼县| 成武县| 舞阳县| 上林县| 苍山县| 日喀则市| 炉霍县| 富民县| 巴东县| 时尚| 兴宁市| 杭州市| 永胜县| 永安市| 堆龙德庆县| 邻水| 禹州市| 津南区| 宜丰县| 云南省| 韶关市|