- Deep Learning Essentials
- Wei Di Anurag Bhardwaj Jianing Wei
- 72字
- 2021-06-30 19:17:54
Calculating errors
The first thing in backpropagation is to calculate the errors from forward propagation for your target value. The input provides y as a test for the accuracy of the network’s output, so we compute the following vector:
This is written in code as follows:
# define error, which is the difference between the activation function output from the last layer and the label
error = tf.sub(a_2, y)
推薦閱讀
- 協作機器人技術及應用
- Hadoop 2.x Administration Cookbook
- 智能工業報警系統
- 樂高創意機器人教程(中級 下冊 10~16歲) (青少年iCAN+創新創意實踐指導叢書)
- 永磁同步電動機變頻調速系統及其控制(第2版)
- 高維聚類知識發現關鍵技術研究及應用
- Implementing AWS:Design,Build,and Manage your Infrastructure
- Nginx高性能Web服務器詳解
- Deep Reinforcement Learning Hands-On
- 教育機器人的風口:全球發展現狀及趨勢
- Ansible 2 Cloud Automation Cookbook
- Building Google Cloud Platform Solutions
- Creating ELearning Games with Unity
- Linux常用命令簡明手冊
- 深度學習之模型優化:核心算法與案例實踐