- Deep Learning Essentials
- Wei Di Anurag Bhardwaj Jianing Wei
- 276字
- 2021-06-30 19:17:50
Setup using Docker
The previous section describes getting started from scratch which can be tricky sometimes given continuous changes to software packages and changing links on the web. One way to avoid dependence on links is to use container technology like Docker.
In this chapter, we will use the official NVIDIA-Docker image that comes pre-packaged with all the necessary packages and deep learning framework to get you quickly started with deep learning application development:
$ sudo add-apt-repository ppa:graphics-drivers/ppa -y
$ sudo apt-get update
$ sudo apt-get install -y nvidia-375 nvidia-settings nvidia-modprobe
- We now install Docker Community Edition as follows:
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
# Verify that the key fingerprint is 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88
$ sudo apt-key fingerprint 0EBFCD88
$ sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"
$ sudo apt-get update
$ sudo apt-get install -y docker-ce
- We then install NVIDIA-Docker and its plugin:
$ wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
$ sudo dpkg -i /tmp/nvidia-docker_1.0.1-1_amd64.deb && rm /tmp/nvidia-docker_1.0.1-1_amd64.deb
- To validate if the installation happened correctly, we use the following command:
$ sudo nvidia-docker run --rm nvidia/cuda nvidia-smi
- Once it’s setup correctly, we can use the official TensorFlow or Theano Docker image:
$ sudo nvidia-docker run -it tensorflow/tensorflow:latest-gpu bash
- We can run a simple Python program to check if TensorFlow works properly:
import tensorflow as tf
a = tf.constant(5, tf.float32)
b = tf.constant(5, tf.float32)
with tf.Session() as sess:
sess.run(tf.add(a, b)) # output is 10.0
print("Output of graph computation is = ",output)
You should see the TensorFlow output on the screen now as shown in figure Tensorflow sample output:

Tensorflow sample output
推薦閱讀
- ETL with Azure Cookbook
- 西門子S7-200 SMART PLC從入門到精通
- MicroPython Projects
- 水晶石精粹:3ds max & ZBrush三維數字靜幀藝術
- Grome Terrain Modeling with Ogre3D,UDK,and Unity3D
- Linux Shell Scripting Cookbook(Third Edition)
- TensorFlow Deep Learning Projects
- Visual Basic項目開發案例精粹
- 計算機應用基礎實訓·職業模塊
- 從零開始學ASP.NET
- 大話數據科學:大數據與機器學習實戰(基于R語言)
- SketchUp 2014 for Architectural Visualization(Second Edition)
- 大學計算機實踐教程
- 嵌入式系統原理與接口技術
- Pentaho Data Integration Beginner's Guide(Second Edition)