- Deep Learning Essentials
- Wei Di Anurag Bhardwaj Jianing Wei
- 70字
- 2021-06-30 19:17:47
CPU cores
Most deep learning applications and libraries use a single core CPU unless they are used within a parallelization framework like Message-Passing Interface (MPI), MapReduce, or Spark. For example, CaffeOnSpark (https://github.com/yahoo/CaffeOnSpark) by the team at Yahoo! uses Spark with Caffe for parallelizing network training across multiple GPUs and CPUs. In most normal settings in a single box, one CPU core is enough for deep learning application development.
推薦閱讀
- 工業(yè)機(jī)器人技術(shù)及應(yīng)用
- 實(shí)時(shí)流計(jì)算系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
- Mastering D3.js
- 機(jī)器人創(chuàng)新實(shí)訓(xùn)教程
- Photoshop CS3特效處理融會貫通
- 聊天機(jī)器人:入門、進(jìn)階與實(shí)戰(zhàn)
- 水下無線傳感器網(wǎng)絡(luò)的通信與決策技術(shù)
- 工業(yè)機(jī)器人維護(hù)與保養(yǎng)
- 和機(jī)器人一起進(jìn)化
- 基于Proteus的PIC單片機(jī)C語言程序設(shè)計(jì)與仿真
- 7天精通Photoshop CS5平面視覺設(shè)計(jì)
- Arduino創(chuàng)意機(jī)器人入門:基于ArduBlock(第2版)
- OSGi原理與最佳實(shí)踐
- 計(jì)算機(jī)仿真技術(shù)
- 單片機(jī)技術(shù)