- IPython Interactive Computing and Visualization Cookbook(Second Edition)
- Cyrille Rossant
- 84字
- 2021-07-02 16:23:35
Chapter 4. Profiling and Optimization
In this chapter, we will cover the following topics:
- Evaluating the time taken by a command in IPython
- Profiling your code easily with cProfile and IPython
- Profiling your code line-by-line with line_profiler
- Profiling the memory usage of your code with memory_profiler
- Understanding the internals of NumPy to avoid unnecessary array copying
- Using stride tricks with NumPy
- Implementing an efficient rolling average algorithm with stride tricks
- Processing large NumPy arrays with memory mapping
- Manipulating large arrays with HDF5
推薦閱讀
- 在你身邊為你設計Ⅲ:騰訊服務設計思維與實戰(zhàn)
- Python絕技:運用Python成為頂級數(shù)據(jù)工程師
- InfluxDB原理與實戰(zhàn)
- Learning JavaScriptMVC
- Dependency Injection with AngularJS
- 達夢數(shù)據(jù)庫性能優(yōu)化
- 數(shù)字IC設計入門(微課視頻版)
- Spark分布式處理實戰(zhàn)
- SQL Server 2012實施與管理實戰(zhàn)指南
- 數(shù)據(jù)庫與數(shù)據(jù)處理:Access 2010實現(xiàn)
- MySQL數(shù)據(jù)庫技術與應用
- 實現(xiàn)領域驅(qū)動設計
- Cognitive Computing with IBM Watson
- NoSQL數(shù)據(jù)庫原理(第2版·微課版)
- 數(shù)據(jù)產(chǎn)品經(jīng)理寶典:大數(shù)據(jù)時代如何創(chuàng)造卓越產(chǎn)品