- IPython Interactive Computing and Visualization Cookbook(Second Edition)
- Cyrille Rossant
- 84字
- 2021-07-02 16:23:35
Chapter 4. Profiling and Optimization
In this chapter, we will cover the following topics:
- Evaluating the time taken by a command in IPython
- Profiling your code easily with cProfile and IPython
- Profiling your code line-by-line with line_profiler
- Profiling the memory usage of your code with memory_profiler
- Understanding the internals of NumPy to avoid unnecessary array copying
- Using stride tricks with NumPy
- Implementing an efficient rolling average algorithm with stride tricks
- Processing large NumPy arrays with memory mapping
- Manipulating large arrays with HDF5
推薦閱讀
- Mastering Ninject for Dependency Injection
- Redis應用實例
- Oracle RAC 11g實戰指南
- R數據科學實戰:工具詳解與案例分析(鮮讀版)
- INSTANT Cytoscape Complex Network Analysis How-to
- 軟件成本度量國家標準實施指南:理論、方法與實踐
- Google Cloud Platform for Developers
- 智慧的云計算
- 大數據數學基礎(Python語言描述)
- 中文版Access 2007實例與操作
- 活用數據:驅動業務的數據分析實戰
- Mastering ROS for Robotics Programming(Second Edition)
- Access 2010數據庫程序設計實踐教程
- 數據指標體系:構建方法與應用實踐
- 大數據時代系列(套裝9冊)