- Scala Machine Learning Projects
- Md. Rezaul Karim
- 276字
- 2021-06-30 19:05:41
Project structure
The wrapped up Scala web ML app has the following directory structure:

In the preceding structure, bitcoin_ml folder has all the backend and frontend codes. The models folder has all the trained models. An example-trained model is given in the gbt_22_binary_classes_32660767 folder. Finally, database files and traces are there in the DataBase.mv.db and DataBase.trace.db files respectively.
Then let us see the sub-folder structure of the bitcoin_ml folder that contains the actual codes:

In the preceding figure, the conf folder has the Scala web app configuration file, application.conf containing necessary configurations (as shown already). All the dependencies are defined in the build.sbt file shown as follows:
libraryDependencies ++= Seq(jdbc, evolutions,
"com.typesafe.play" %% "anorm" % "2.5.1",
cache, ws, specs2 % Test, ws)
unmanagedResourceDirectories in Test <+= baseDirectory(_ / "target/web/public/test")
resolvers += "scalaz-bintray" at "https://dl.bintray.com/scalaz/releases"
resolvers ++= Seq(
"apache-snapshots" at "http://repository.apache.org/snapshots/")
routesGenerator := InjectedRoutesGenerator
val sparkVersion = "2.2.0"
libraryDependencies += "org.apache.spark" %% "spark-mllib" % sparkVersion
libraryDependencies += "org.apache.hadoop" % "hadoop-mapreduce-client-core" % "2.7.2"
libraryDependencies += "org.apache.hadoop" % "hadoop-common" % "2.7.2"
libraryDependencies += "commons-io" % "commons-io" % "2.4"
libraryDependencies += "org.codehaus.janino" % "janino" % "3.0.7" //fixing "java.lang.ClassNotFoundException: de.unkrig.jdisasm.Disassembler" exception
libraryDependencies ++= Seq(
"com.typesafe.slick" %% "slick" % "3.1.1",
"org.slf4j" % "slf4j-nop" % "1.6.4"
)
To be frank, at the beginning of writing, I did not think of wrapping up this application as a Scala Play web app. Therefore, things went a bit unstructured. However, do not worry to know more about backend as well frontend, refer to the options trading application in Chapter 7, Options Trading Using Q-Learning and Scala Play Framework.
- GNU-Linux Rapid Embedded Programming
- 精通MATLAB神經(jīng)網(wǎng)絡(luò)
- MCSA Windows Server 2016 Certification Guide:Exam 70-741
- 自動(dòng)化控制工程設(shè)計(jì)
- 小型電動(dòng)機(jī)實(shí)用設(shè)計(jì)手冊(cè)
- 項(xiàng)目管理成功利器Project 2007全程解析
- 學(xué)會(huì)VBA,菜鳥也高飛!
- ESP8266 Robotics Projects
- WOW!Photoshop CS6完全自學(xué)寶典
- 智能制造系統(tǒng)及關(guān)鍵使能技術(shù)
- 基于Proteus的PIC單片機(jī)C語言程序設(shè)計(jì)與仿真
- PowerPoint 2010幻燈片制作高手速成
- PyTorch深度學(xué)習(xí)
- Eclipse全程指南
- 從實(shí)踐中學(xué)嵌入式Linux操作系統(tǒng)