- Practical Computer Vision
- Abhinav Dadhich
- 140字
- 2021-06-30 18:54:46
MNIST
MNIST is a dataset for handwritten digits with the numbers 0-9 with 60,000 images of size 28 x 28 as the training set and 10,000 images of size 28 x 28 as the test set. This has become the go to dataset for starting machine learning or deep learning. It is provided in most of the frameworks and there is no need to download it separately. In Keras, this can be used as follows:
from __future__ import print_function
from keras.datasets import mnist
import matplotlib.pyplot as plt
# Download and load dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# to know the size of data
print("Train data shape:", x_train.shape, "Test data shape:", x_test.shape)
# plot sample image
idx = 0
print("Label:",y_train[idx])
plt.imshow(x_train[idx], cmap='gray')
plt.axis('off')
plt.show()
Some of the sample images from this dataset are as shown in the following figure:

推薦閱讀
- Hands-On Intelligent Agents with OpenAI Gym
- 樂高機器人:WeDo編程與搭建指南
- PostgreSQL 11 Server Side Programming Quick Start Guide
- 計算機網絡技術基礎
- LAMP網站開發黃金組合Linux+Apache+MySQL+PHP
- Excel 2010函數與公式速查手冊
- INSTANT Puppet 3 Starter
- 水晶石影視動畫精粹:After Effects & Nuke 影視后期合成
- Mastering MongoDB 3.x
- Linux系統下C程序開發詳解
- 計算機硬件技術基礎學習指導與練習
- 工程地質地學信息遙感自動提取技術
- Hadoop大數據開發基礎
- 智能與智慧:人工智能遇見中國哲學家
- 隨機分布控制系統的故障診斷與容錯控制