- Practical Convolutional Neural Networks
- Mohit Sewak Md. Rezaul Karim Pradeep Pujari
- 60字
- 2021-06-24 18:58:54
Convolutional layer
The main objective of convolution in relation to ConvNet is to extract features from the input image. This layer does most of the computation in a ConvNet. We will not go into the mathematical details of convolution here but will get an understanding of how it works over images.
The ReLU activation function is extremely useful in CNNs.
推薦閱讀
- 數據挖掘原理與實踐
- 正則表達式必知必會
- 新型數據庫系統:原理、架構與實踐
- MySQL基礎教程
- 數據要素五論:信息、權屬、價值、安全、交易
- Learn Unity ML-Agents:Fundamentals of Unity Machine Learning
- 數字媒體交互設計(初級):Web產品交互設計方法與案例
- AI時代的數據價值創造:從數據底座到大模型應用落地
- PostgreSQL指南:內幕探索
- SAS金融數據挖掘與建模:系統方法與案例解析
- Mastering LOB Development for Silverlight 5:A Case Study in Action
- 實用數據結構
- 聯動Oracle:設計思想、架構實現與AWR報告
- 區塊鏈+:落地場景與應用實戰
- 數據迷霧:洞察數據的價值與內涵