官术网_书友最值得收藏!

Layers in the Keras model

A Keras layer is just like a neural network layer. There are fully connected layers, max pool layers, and activation layers. A layer can be added to the model using the model's add() function. For example, a simple model can be represented by the following:

from keras.models import Sequential
from keras.layers.core import Dense, Activation, Flatten

#Creating the Sequential model
model = Sequential()

#Layer 1 - Adding a flatten layer
model.add(Flatten(input_shape=(32, 32, 3)))

#Layer 2 - Adding a fully connected layer
model.add(Dense(100))

#Layer 3 - Adding a ReLU activation layer
model.add(Activation('relu'))

#Layer 4- Adding a fully connected layer
model.add(Dense(60))

#Layer 5 - Adding an ReLU activation layer
model.add(Activation('relu'))

Keras will automatically infer the shape of all layers after the first layer. This means you only have to set the input dimensions for the first layer. The first layer from the preceding code snippet, model.add(Flatten(input_shape=(32, 32, 3))), sets the input dimension to (32, 32, 3) and the output dimension to (3072=32 x 32 x 3). The second layer takes in the output of the first layer and sets the output dimensions to (100). This chain of passing the output to the next layer continues until the last layer, which is the output of the model.

主站蜘蛛池模板: 河津市| 奎屯市| 海城市| 武隆县| 平塘县| 澄迈县| 镇原县| 左贡县| 海南省| 安多县| 永宁县| 康定县| 余干县| 海安县| 永昌县| 凤冈县| 甘肃省| 青海省| 天门市| 鸡西市| 肇庆市| 巴林左旗| 太保市| 石渠县| 普兰店市| 石阡县| 深州市| 武陟县| 阿荣旗| 承德市| 厦门市| 廊坊市| 铁力市| 长垣县| 囊谦县| 新巴尔虎右旗| 德格县| 惠东县| 织金县| 乡城县| 雷山县|