官术网_书友最值得收藏!

Calculating the confusion matrix

We'll use a straightforward approach here to calculate the confusion matrix; however, this would not work for multiclass classification. Here, p stands for predicted value, and t is for ground truth:

let pairs: [(Int, Int)] = zip(predictions, yVecTest).map{ ($0.0, $0.1) } 
var confusionMatrix = [[0,0], [0,0]] 
for (p, t) in pairs { 
    switch (p, t) { 
    case (0, 0): 
        confusionMatrix[0][0] += 1 
    case (0, _): 
        confusionMatrix[1][0] += 1 
    case (_, 0): 
        confusionMatrix[0][1] += 1 
    case (_, _): 
        confusionMatrix[1][1] += 1 
    } 
} 
     
let totalCount = Double(yVecTest.count) 

Normalize the matrix by total count:

let normalizedConfusionMatrix = confusionMatrix.map{$0.map{Double($0)/totalCount}} 

As we already know, accuracy is a number of true predictions divided by the total number of cases.

To calculate accuracy, try using the following code:

let truePredictionsCount = pairs.filter{ $0.0 == $0.1 }.count 
let accuracy = Double(truePredictionsCount) / totalCoun  

To calculate true positive, false positive, and false negative counts, you can use the numbers from the confusion matrix, but let's do it the proper way:

 
let truePositive = Double(pairs.filter{ $0.0 == $0.1 && $0.0 == 0 }.count) 
let falsePositive = Double(pairs.filter{ $0.0 != $0.1 && $0.0 == 0 }.count) 
let falseNegative = Double(pairs.filter{ $0.0 != $0.1 && $0.0 == 1 }.count) 

To calculate precision:

let precision = truePositive / (truePositive + falsePositive) 

To calculate recall:

let recall = truePositive / (truePositive + falseNegative) 

To calculate F1-score:

let f1Score = 2 * precision * recall / (precision + recall) 
     
return Metrics(confusionMatrix: confusionMatrix, normalizedConfusionMatrix: normalizedConfusionMatrix, accuracy: accuracy, precision: precision, recall: recall, f1Score: f1Score) 
} 

Here is my result for the decision tree on iOS:

Confusion Matrix: 
[[135, 17],  
[20, 128]] 
 
Normalized Confusion Matrix: 
[[0.45000000000000001, 0.056666666666666664],  
[0.066666666666666666, 0.42666666666666669]] 
 
Accuracy: 0.876666666666667 
Precision: 0.870967741935484 
Recall: 0.888157894736842 
F1-score: 0.879478827361563 
 

And for the random forest:

Confusion Matrix: 
[[138, 14],  
[18, 130]] 
 
Normalized Confusion Matrix: 
[[0.46000000000000002, 0.046666666666666669],  
[0.059999999999999998, 0.43333333333333335]] 
 
Accuracy: 0.893333333333333 
Precision: 0.884615384615385 
Recall: 0.907894736842105 
F1-score: 0.896103896103896 

Congratulations! We've trained two machine learning algorithms, deployed them to the iOS, and evaluated their accuracy. Interesting that while decision tree metrics match perfectly, the random forest performance is slightly worse on Core ML. Don't forget to always validate your model after any type of conversion.

主站蜘蛛池模板: 铅山县| 宁海县| 乌兰浩特市| 郸城县| 山丹县| 定襄县| 青田县| 临澧县| 承德市| 固阳县| 徐水县| 叶城县| 大英县| 磐安县| 富宁县| 南溪县| 文成县| 广元市| 额敏县| 湘乡市| 甘孜| 砀山县| 岫岩| 文登市| 鄂伦春自治旗| 宁安市| 长武县| 武穴市| 大同市| 兴海县| 莱州市| 缙云县| 丽江市| 新蔡县| 鹿邑县| 永川市| 定兴县| 秭归县| 大城县| 靖江市| 张掖市|