- Machine Learning with Swift
- Alexander Sosnovshchenko
- 84字
- 2021-06-24 18:55:00
Core ML features
Here is a list of Core ML features:
- coremltools Python package includes several converters for popular machine learning frameworks: scikit-learn, Keras, Caffe, LIBSVM, and XGBoost.
- Core ML framework allows running inference (making predictions) on a device. Scikit-learn converter also supports some data transformation and model pipelining.
- Hardware acceleration (Accelerate framework and Metal under the hood).
- Supports iOS, macOS, tvOS, and watchOS.
- Automatic code generation for OOP-style interoperability with Swift.
The biggest Core ML limitation is that it doesn't support models training.
推薦閱讀
- 新媒體跨界交互設計
- 圖解西門子S7-200系列PLC入門
- 龍芯應用開發標準教程
- Android NDK Game Development Cookbook
- Applied Unsupervised Learning with R
- 基于ARM的嵌入式系統和物聯網開發
- 3ds Max Speed Modeling for 3D Artists
- 深入淺出SSD:固態存儲核心技術、原理與實戰(第2版)
- Svelte 3 Up and Running
- The Deep Learning with Keras Workshop
- 基于Apache Kylin構建大數據分析平臺
- 筆記本電腦使用、維護與故障排除從入門到精通(第5版)
- 筆記本電腦應用技巧
- 3D Printing Blueprints
- 微服務實戰(Dubbox +Spring Boot+Docker)