- Machine Learning with Swift
- Alexander Sosnovshchenko
- 83字
- 2021-06-24 18:55:07
K-Means Clustering
In this chapter, we're going to switch our attention from supervised learning to unsupervised learning. The algorithms that we'll discuss and implement in this chapter are k-means and k-means++ clustering.
In this chapter, we will cover the following topics:
- Instance-based algorithm of k-means clustering
- The shortcomings of the k-means and how to fix them with the k-means++
- Where you can use k-means and where you shouldn't use it
- Application of clustering for signal quantization
- How to choose the number of clusters
推薦閱讀
- Windows phone 7.5 application development with F#
- Cortex-M3 + μC/OS-II嵌入式系統開發入門與應用
- 嵌入式系統設計教程
- 單片機原理及應用系統設計
- 微服務分布式架構基礎與實戰:基于Spring Boot + Spring Cloud
- 微軟互聯網信息服務(IIS)最佳實踐 (微軟技術開發者叢書)
- 基于PROTEUS的電路設計、仿真與制板
- Wireframing Essentials
- 單片機原理及應用:基于C51+Proteus仿真
- Mastering Machine Learning on AWS
- Intel FPGA權威設計指南:基于Quartus Prime Pro 19集成開發環境
- Arduino項目案例:游戲開發
- Blender 3D By Example
- 嵌入式系統設計大學教程(第2版)
- 計算機組裝與維護