- Machine Learning with Swift
- Alexander Sosnovshchenko
- 78字
- 2021-06-24 18:55:06
Smarter time series chunking
We split our time series into chunks of 25 elements length. This introduces delay when the motion type changes from one to another. This can also be fixed relatively easily by introducing sliding windows instead of chunks. With this approach, we don't need to wait for the new chunk to be delivered; we just record a frame or predict a new label every time when we get a new value from the motion sensor.
推薦閱讀
- 硬件產(chǎn)品經(jīng)理手冊(cè):手把手構(gòu)建智能硬件產(chǎn)品
- Camtasia Studio 8:Advanced Editing and Publishing Techniques
- The Deep Learning with Keras Workshop
- 筆記本電腦使用、維護(hù)與故障排除從入門到精通(第5版)
- OpenGL Game Development By Example
- 單片機(jī)開發(fā)與典型工程項(xiàng)目實(shí)例詳解
- Blender Game Engine:Beginner's Guide
- FreeSWITCH Cookbook
- Istio實(shí)戰(zhàn)指南
- Blender 3D By Example
- Mastering Quantum Computing with IBM QX
- Corona SDK Mobile Game Development:Beginner's Guide
- 分布式存儲(chǔ)系統(tǒng):核心技術(shù)、系統(tǒng)實(shí)現(xiàn)與Go項(xiàng)目實(shí)戰(zhàn)
- The Machine Learning Workshop
- PIC系列單片機(jī)的流碼編程