- Deep Learning By Example
- Ahmed Menshawy
- 324字
- 2021-06-24 18:52:38
Implementing the fish recognition/detection model
To introduce the power of machine learning and deep learning in particular, we are going to implement the fish recognition example. No understanding of the inner details of the code will be required. The point of this section is to give you an overview of a typical machine learning pipeline.
Our knowledge base for this task will be a bunch of images, each one of them is labeled as opah or tuna. For this implementation, we are going to use one of the deep learning architectures that made a breakthrough in the area of imaging and computer vision in general. This architecture is called Convolution Neural Networks (CNNs). It is a family of deep learning architectures that use the convolution operation of image processing to extract features from the images that can explain the object that we want to classify. For now, you can think of it as a magic box that will take our images, learn from it how to distinguish between our two classes (opah and tuna), and then we will test the learning process of this box by feeding it with unlabeled images and see if it's able to tell which type of fish is in the image.
In this example, we will be using Keras. For the moment, you can think of Keras as an API that makes building and using deep learning way easier than usual. So let's get started! From the Keras website we have:
- Mastering Mesos
- Ansible Configuration Management
- Hadoop 2.x Administration Cookbook
- Python Algorithmic Trading Cookbook
- Photoshop CS3特效處理融會貫通
- 信息物理系統(CPS)測試與評價技術
- Practical Big Data Analytics
- FPGA/CPLD應用技術(Verilog語言版)
- 實戰Windows Azure
- Oracle 11g Anti-hacker's Cookbook
- DynamoDB Applied Design Patterns
- Hands-On Microservices with C#
- 牛津通識讀本:大數據(中文版)
- 輸送技術、設備與工業應用
- VMware vSphere 6.5 Cookbook(Third Edition)