- Deep Learning Quick Reference
- Mike Bernico
- 140字
- 2021-06-24 18:40:15
Loading data
We can load the data used in this chapter with the following function. It's very similar to the function we used in chapter 2, however it's adapted for this dataset.
from sklearn.preprocessing import StandardScaler
def load_data():
"""Loads train, val, and test datasets from disk"""
train = pd.read_csv(TRAIN_DATA)
val = pd.read_csv(VAL_DATA)
test = pd.read_csv(TEST_DATA)
# we will use a dict to keep all this data tidy.
data = dict()
data["train_y"] = train.pop('y')
data["val_y"] = val.pop('y')
data["test_y"] = test.pop('y')
# we will use sklearn's StandardScaler to scale our data to 0 mean, unit variance.
scaler = StandardScaler()
train = scaler.fit_transform(train)
val = scaler.transform(val)
test = scaler.transform(test)
data["train_X"] = train
data["val_X"] = val
data["test_X"] = test
# it's a good idea to keep the scaler (or at least the mean/variance) so we can unscale predictions
data["scaler"] = scaler
return data
推薦閱讀
- 計算機(jī)應(yīng)用
- 腦動力:C語言函數(shù)速查效率手冊
- 控制與決策系統(tǒng)仿真
- Visual C# 2008開發(fā)技術(shù)詳解
- STM32G4入門與電機(jī)控制實戰(zhàn):基于X-CUBE-MCSDK的無刷直流電機(jī)與永磁同步電機(jī)控制實現(xiàn)
- 西門子S7-200 SMART PLC實例指導(dǎo)學(xué)與用
- 單片機(jī)C語言應(yīng)用100例
- TensorFlow Reinforcement Learning Quick Start Guide
- Visual Studio 2010 (C#) Windows數(shù)據(jù)庫項目開發(fā)
- Flink原理與實踐
- WOW!Photoshop CS6完全自學(xué)寶典
- Generative Adversarial Networks Projects
- Java Deep Learning Projects
- 時序大數(shù)據(jù)平臺TDengine核心原理與實戰(zhàn)
- Orange'S:一個操作系統(tǒng)的實現(xiàn)