官术网_书友最值得收藏!

Input layer shape

Since we've already identified our inputs, we know that the input matrix will have a number of rows equal to the number of data elements/observations in our dataset and a number of columns equal to the number of variables/features.  The shape of the input matrix then is (number of observations x  10 features).  Rather than defining the exact number of records in our dataset or minibatch, TensorFlow and Keras allow us to use None as a placeholder when we define the number of elements in a dataset.

If you see a None dimension used in a Keras or TensorFlow model layer shape, it really means any, the dimension could take on any positive integer value.
主站蜘蛛池模板: 柳江县| 渑池县| 木兰县| 伊金霍洛旗| 双江| 和政县| 扬州市| 体育| 晋宁县| 镇平县| 中宁县| 英德市| 康平县| 遂平县| 盐山县| 铜梁县| 大城县| 兴宁市| 壶关县| 遵义县| 五台县| 九寨沟县| 安徽省| 桃源县| 宾川县| 清涧县| 兴和县| 霍邱县| 英德市| 星子县| 阳西县| 婺源县| 浠水县| 纳雍县| 内江市| 理塘县| 九台市| 泰来县| 临漳县| 古交市| 错那县|