- Deep Learning Quick Reference
- Mike Bernico
- 121字
- 2021-06-24 18:40:10
Input layer shape
Since we've already identified our inputs, we know that the input matrix will have a number of rows equal to the number of data elements/observations in our dataset and a number of columns equal to the number of variables/features. The shape of the input matrix then is (number of observations x 10 features). Rather than defining the exact number of records in our dataset or minibatch, TensorFlow and Keras allow us to use None as a placeholder when we define the number of elements in a dataset.
If you see a None dimension used in a Keras or TensorFlow model layer shape, it really means any, the dimension could take on any positive integer value.
推薦閱讀
- 蕩胸生層云:C語言開發(fā)修行實錄
- Visual FoxPro 6.0數(shù)據(jù)庫與程序設(shè)計
- 21天學通C++
- 21天學通ASP.NET
- STM32G4入門與電機控制實戰(zhàn):基于X-CUBE-MCSDK的無刷直流電機與永磁同步電機控制實現(xiàn)
- Hands-On Linux for Architects
- 大數(shù)據(jù)平臺異常檢測分析系統(tǒng)的若干關(guān)鍵技術(shù)研究
- WordPress Theme Development Beginner's Guide(Third Edition)
- 四向穿梭式自動化密集倉儲系統(tǒng)的設(shè)計與控制
- 數(shù)據(jù)庫系統(tǒng)原理及應用教程(第5版)
- 工業(yè)機器人安裝與調(diào)試
- Practical Big Data Analytics
- 基于神經(jīng)網(wǎng)絡(luò)的監(jiān)督和半監(jiān)督學習方法與遙感圖像智能解譯
- 電腦日常使用與維護322問
- 實用網(wǎng)絡(luò)流量分析技術(shù)