- Deep Learning Quick Reference
- Mike Bernico
- 121字
- 2021-06-24 18:40:10
Input layer shape
Since we've already identified our inputs, we know that the input matrix will have a number of rows equal to the number of data elements/observations in our dataset and a number of columns equal to the number of variables/features. The shape of the input matrix then is (number of observations x 10 features). Rather than defining the exact number of records in our dataset or minibatch, TensorFlow and Keras allow us to use None as a placeholder when we define the number of elements in a dataset.
If you see a None dimension used in a Keras or TensorFlow model layer shape, it really means any, the dimension could take on any positive integer value.
推薦閱讀
- 實時流計算系統設計與實現
- 影視后期制作(Avid Media Composer 5.0)
- Cloud Analytics with Microsoft Azure
- 現代機械運動控制技術
- 永磁同步電動機變頻調速系統及其控制(第2版)
- 學會VBA,菜鳥也高飛!
- Spatial Analytics with ArcGIS
- Excel 2007終極技巧金典
- Linux Shell Scripting Cookbook(Third Edition)
- 網管員世界2009超值精華本
- 基于元胞自動機的人群疏散系統建模與分析
- 新世紀Photoshop CS6中文版應用教程
- 設計中的人因:34個設計小故事
- 局域網應用一點通
- iLike職場大學生就業指導:C和C++方向