官术网_书友最值得收藏!

Input layer shape

Since we've already identified our inputs, we know that the input matrix will have a number of rows equal to the number of data elements/observations in our dataset and a number of columns equal to the number of variables/features.  The shape of the input matrix then is (number of observations x  10 features).  Rather than defining the exact number of records in our dataset or minibatch, TensorFlow and Keras allow us to use None as a placeholder when we define the number of elements in a dataset.

If you see a None dimension used in a Keras or TensorFlow model layer shape, it really means any, the dimension could take on any positive integer value.
主站蜘蛛池模板: 河北区| 启东市| 双峰县| 横峰县| 永川市| 玛纳斯县| 汉寿县| 富民县| 乐业县| 和硕县| 霍城县| 凤翔县| 大港区| 甘谷县| 西乡县| 栾川县| 扶沟县| 平度市| 安平县| 永靖县| 湘阴县| 虎林市| 临夏县| 循化| 吴桥县| 依兰县| 平罗县| 土默特右旗| 滦平县| 上林县| SHOW| 舞钢市| 应城市| 油尖旺区| 尤溪县| 红原县| 巴彦淖尔市| 沈丘县| 兰坪| 资兴市| 通辽市|