- Deep Learning Quick Reference
- Mike Bernico
- 98字
- 2021-06-24 18:40:05
Using momentum with gradient descent
Using gradient descent with momentum speeds up gradient descent by increasing the speed of learning in directions the gradient has been constant in direction while slowing learning in directions the gradient fluctuates in direction. It allows the velocity of gradient descent to increase.
Momentum works by introducing a velocity term, and using a weighted moving average of that term in the update rule, as follows:


Most typically is set to 0.9 in the case of momentum, and usually this is not a hyper-parameter that needs to be changed.
推薦閱讀
- 輕松學(xué)C語言
- 網(wǎng)上沖浪
- 工業(yè)機(jī)器人產(chǎn)品應(yīng)用實(shí)戰(zhàn)
- Getting Started with Oracle SOA B2B Integration:A Hands-On Tutorial
- 錯(cuò)覺:AI 如何通過數(shù)據(jù)挖掘誤導(dǎo)我們
- 機(jī)器學(xué)習(xí)與大數(shù)據(jù)技術(shù)
- 數(shù)據(jù)庫原理與應(yīng)用技術(shù)學(xué)習(xí)指導(dǎo)
- 工業(yè)機(jī)器人工程應(yīng)用虛擬仿真教程:MotoSim EG-VRC
- Maya 2012從入門到精通
- 大數(shù)據(jù)挑戰(zhàn)與NoSQL數(shù)據(jù)庫技術(shù)
- 網(wǎng)絡(luò)組建與互聯(lián)
- Kubernetes for Serverless Applications
- 云原生架構(gòu)進(jìn)階實(shí)戰(zhàn)
- Red Hat Enterprise Linux 5.0服務(wù)器構(gòu)建與故障排除
- 網(wǎng)管員世界2009超值精華本