- Reinforcement Learning with TensorFlow
- Sayon Dutta
- 87字
- 2021-08-27 18:52:01
Summary
In this chapter, we learned about OpenAI Gym, including the installation of different important functions to load, render, and understand the environment state-action spaces. We learned about the Epsilon-Greedy approach as a solution to the exploration-exploitation dilemma, and tried to implement a basic Q-learning and Q-network algorithm to train a reinforcement-learning agent to navigate an environment from OpenAI Gym.
In the next chapter, we will cover the most fundamental concepts in Reinforcement Learning, which include Markov Decision Processes (MDPs), Bellman Equation, and Markov Chain Monte Carlo.
推薦閱讀
- 大學計算機信息技術導論
- 大數據戰爭:人工智能時代不能不說的事
- Oracle SOA Governance 11g Implementation
- 網絡服務器架設(Windows Server+Linux Server)
- 一本書玩轉數據分析(雙色圖解版)
- TestStand工業自動化測試管理(典藏版)
- Visual FoxPro 6.0數據庫與程序設計
- 城市道路交通主動控制技術
- Hadoop Real-World Solutions Cookbook(Second Edition)
- 永磁同步電動機變頻調速系統及其控制(第2版)
- Windows安全指南
- 納米集成電路制造工藝(第2版)
- 網絡安全概論
- Python語言從入門到精通
- Eclipse RCP應用系統開發方法與實戰