- Reinforcement Learning with TensorFlow
- Sayon Dutta
- 82字
- 2021-08-27 18:51:57
Overcoming the limitations of deep learning
These two possible problems can be overcome by:
- Minimizing the use of the sigmoid and tanh activation functions
- Using a momentum-based stochastic gradient descent
- Proper initialization of weights and biases, such as xavier initialization
- Regularization (add regularization loss along with data loss and minimize that)
For more detail, along with mathematical representations of the vanishing and exploding gradient, you can read this article: Intelligent Signals : Unstable Deep Learning. Why and How to solve them ?
推薦閱讀
- 零起步輕松學(xué)單片機(jī)技術(shù)(第2版)
- Splunk 7 Essentials(Third Edition)
- 玩轉(zhuǎn)智能機(jī)器人程小奔
- Project 2007項(xiàng)目管理實(shí)用詳解
- 大數(shù)據(jù)專業(yè)英語
- 商戰(zhàn)數(shù)據(jù)挖掘:你需要了解的數(shù)據(jù)科學(xué)與分析思維
- Apache Hive Essentials
- 自動(dòng)生產(chǎn)線的拆裝與調(diào)試
- 悟透AutoCAD 2009完全自學(xué)手冊(cè)
- Enterprise PowerShell Scripting Bootcamp
- RedHat Linux用戶基礎(chǔ)
- 過程控制系統(tǒng)
- C++程序設(shè)計(jì)基礎(chǔ)(上)
- 重估:人工智能與賦能社會(huì)
- 從零開始學(xué)ASP.NET