- Reinforcement Learning with TensorFlow
- Sayon Dutta
- 99字
- 2021-08-27 18:51:52
Notation
Let the data be of the form , where:
,
(number of classes = 2 because it's a binary classification)
is 'n' dimensional, that is,
(refers to the preceding diagram)
The number of training examples is m. Thus the training set looks as follows:
.
m = size of training dataset.
And, since
, where, each
.
Therefore,
is a matrix of size n * m, that is, number of features * number of training examples.
, a vector of m outputs, where, each
.
Parameters : Weights
, and bias
,
where
and
is a scalar value.
推薦閱讀
- AWS:Security Best Practices on AWS
- TIBCO Spotfire:A Comprehensive Primer(Second Edition)
- 數據通信與計算機網絡
- MATLAB/Simulink權威指南:開發環境、程序設計、系統仿真與案例實戰
- 傳感器與新聞
- LAMP網站開發黃金組合Linux+Apache+MySQL+PHP
- PVCBOT機器人控制技術入門
- Windows Server 2008 R2活動目錄內幕
- HTML5 Canvas Cookbook
- 激光選區熔化3D打印技術
- Extending Ansible
- 工業機器人力覺視覺控制高級應用
- Spark大數據商業實戰三部曲:內核解密|商業案例|性能調優
- 基于RPA技術財務機器人的應用與研究
- Cisco UCS Cookbook