- Reinforcement Learning with TensorFlow
- Sayon Dutta
- 166字
- 2021-08-27 18:51:51
The softmax function
The softmax function is mainly used to handle classification problems and preferably used in the output layer, outputting the probabilities of the output classes. As seen earlier, while solving the binary logistic regression, we witnessed that the sigmoid function was able to handle only two classes. In order to handle multi-class we need a function that can generate values for all the classes and those values follow the rules of probability. This objective is fulfilled by the softmax function, which shrinks the outputs for each class between 0 and 1 and divides them by the sum of the outputs for all the classes:
For examples, , where x refers to four classes.
Then, the softmax function will gives results (rounded to three decimal places) as:




Thus, we see the probabilities of all the classes. Since the output of every classifier demands probabilistic values for all the classes, the softmax function becomes the best candidate for the outer layer activation function of the classifier.
- 繪制進程圖:可視化D++語言(第1冊)
- Word 2003、Excel 2003、PowerPoint 2003上機指導與練習
- 人工免疫算法改進及其應用
- 圖解PLC控制系統(tǒng)梯形圖和語句表
- 圖形圖像處理(Photoshop)
- Visual Basic從初學到精通
- Photoshop CS3特效處理融會貫通
- JSF2和RichFaces4使用指南
- LAMP網(wǎng)站開發(fā)黃金組合Linux+Apache+MySQL+PHP
- SMS 2003部署與操作深入指南
- Xilinx FPGA高級設計及應用
- Cortex-M3嵌入式處理器原理與應用
- 貫通Java Web輕量級應用開發(fā)
- 計算機辦公應用培訓教程
- 分布式Java應用