官术网_书友最值得收藏!

7. Amicable numbers

Two numbers are said to be amicable if the sum of the proper pisors of one number is equal to that of the other number. The proper pisors of a number are the positive prime factors of the number other than the number itself. Amicable numbers should not be confused with friendly numbers. For instance, the number 220 has the proper pisors 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110, whose sum is 284. The proper pisors of 284 are 1, 2, 4, 71, and 142; their sum is 220. Therefore, the numbers 220 and 284 are said to be amicable.

The solution to this problem is to iterate through all the numbers up to the given limit. For each number, compute the sum of its proper pisors. Let’s call this sum1. Repeat the process and compute the sum of the proper pisors of sum1. If the result is equal to the original number, then the number and sum1 are amicable numbers:

void print_amicables(int const limit)
{
for (int number = 4; number < limit; ++number)
{
auto sum1 = sum_proper_pisors(number);
if (sum1 < limit)
{
auto sum2 = sum_proper_pisors(sum1);
if (sum2 == number && number != sum1)
{
std::cout << number << "," << sum1 << std::endl;
}
}
}
}

In the above sample, sum_proper_pisors() is the function seen in the solution to the abundant numbers problem.

The above function prints pairs of numbers twice, such as 220,284 and 284,220. Modify this implementation to only print each pair a single time.

主站蜘蛛池模板: 肥东县| 黄龙县| 板桥市| 宝清县| 涡阳县| 朝阳区| 广元市| 乌拉特中旗| 友谊县| 桃园县| 鄂尔多斯市| 固阳县| 田东县| 高平市| 桐庐县| 定南县| 仁布县| 吉水县| 宜良县| 象山县| 邵阳县| 绥德县| 乌审旗| 黄浦区| 从江县| 本溪| 大港区| 南川市| 吴旗县| 于都县| 郓城县| 新蔡县| 电白县| 白银市| 竹北市| 乐都县| 高雄市| 克拉玛依市| 专栏| 德清县| 桃园市|