官术网_书友最值得收藏!

  • The Modern C++ Challenge
  • Marius Bancila
  • 271字
  • 2021-06-25 22:01:24

7. Amicable numbers

Two numbers are said to be amicable if the sum of the proper pisors of one number is equal to that of the other number. The proper pisors of a number are the positive prime factors of the number other than the number itself. Amicable numbers should not be confused with friendly numbers. For instance, the number 220 has the proper pisors 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110, whose sum is 284. The proper pisors of 284 are 1, 2, 4, 71, and 142; their sum is 220. Therefore, the numbers 220 and 284 are said to be amicable.

The solution to this problem is to iterate through all the numbers up to the given limit. For each number, compute the sum of its proper pisors. Let’s call this sum1. Repeat the process and compute the sum of the proper pisors of sum1. If the result is equal to the original number, then the number and sum1 are amicable numbers:

void print_amicables(int const limit)
{
for (int number = 4; number < limit; ++number)
{
auto sum1 = sum_proper_pisors(number);
if (sum1 < limit)
{
auto sum2 = sum_proper_pisors(sum1);
if (sum2 == number && number != sum1)
{
std::cout << number << "," << sum1 << std::endl;
}
}
}
}

In the above sample, sum_proper_pisors() is the function seen in the solution to the abundant numbers problem.

The above function prints pairs of numbers twice, such as 220,284 and 284,220. Modify this implementation to only print each pair a single time.

主站蜘蛛池模板: 华蓥市| 长海县| 安徽省| 镇雄县| 东丰县| 淮滨县| 白银市| 衡水市| 新巴尔虎左旗| 蒙山县| 玛沁县| 车致| 南投市| 景泰县| 韶山市| 全椒县| 辽宁省| 张家口市| 水城县| 蒙山县| 新宾| 京山县| 阿巴嘎旗| 小金县| 高州市| 三门县| 西吉县| 即墨市| 尖扎县| 辉南县| 仲巴县| 抚顺市| 鄱阳县| 安仁县| 古浪县| 稷山县| 宜丰县| 盐源县| 晴隆县| 东兰县| 青川县|