官术网_书友最值得收藏!

The Continuous Bag-of-Words algorithm

The CBOW model has a working similar to the skip-gram algorithm with one significant change in the problem formulation. In the skip-gram model, we predicted the context words from the target word. However, in the CBOW model, we will predict the target from contextual words. Let's compare what data looks like for skip-gram and CBOW by taking the previous example sentence:

The dog barked at the mailman.

For skip-gram, data tuples—(input word, output word)—might look like this:

(dog, the), (dog, barked), (barked, dog), and so on.

For CBOW, data tuples would look like the following:

([the, barked], dog), ([dog, at], barked), and so on.

Consequently, the input of the CBOW has a dimensionality of 2 × m × D, where m is the context window size and D is the dimensionality of the embeddings. The conceptual model of CBOW is shown in Figure 3.13:

Figure 3.13: The CBOW model

We will not go into great details about the intricacies of CBOW as they are quite similar to those of skip-gram. However, we will discuss the algorithm implementation (though not in depth, as it shares a lot of similarities with skip-gram) to get a clear understanding of how to properly implement CBOW. The full implementation of CBOW is available at ch3_word2vec.ipynb in the ch3 exercise folder.

Implementing CBOW in TensorFlow

First, we define the variables; this is same as in the case of the skip-gram model:

embeddings = tf.Variable(tf.random_uniform([vocabulary_size,
  embedding_size], -1.0, 1.0, dtype=tf.float32))
softmax_weights = tf.Variable(
  tf.truncated_normal([vocabulary_size, embedding_size],
  stddev=1.0 / math.sqrt(embedding_size),
  dtype=tf.float32))
softmax_biases =
  tf.Variable(tf.zeros([vocabulary_size],dtype=tf.float32))

Here, we are creating a stacked set of embeddings, representing each position of the context. So we will have a matrix of size [batch_size, embeddings_size, 2*context_window_size]. Then, we will use a reduction operator to reduce the stacked matrix to that of size [batch_size, embedding size] by averaging the stacked embeddings over the last axis:

stacked_embedings = None
for i in range(2*window_size):
  embedding_i = tf.nn.embedding_lookup(embeddings,
  train_dataset[:,i])
  x_size,y_size = embedding_i.get_shape().as_list()
  if stacked_embedings is None:
    stacked_embedings = tf.reshape(embedding_i,[x_size,y_size,1])
  else:
    stacked_embedings =
    tf.concat(axis=2,
      values=[stacked_embedings,
      tf.reshape(embedding_i,[x_size,y_size,1])]
    )

assert stacked_embedings.get_shape().as_list()[2]==2*window_size
mean_embeddings = tf.reduce_mean(stacked_embedings,2,keepdims=False)

Thereafter, loss and optimizer are defined as in the skip-gram model:

loss = tf.reduce_mean(
    tf.nn.sampled_softmax_loss(weights=softmax_weights,
        biases=softmax_biases,
        inputs=mean_embeddings,
        labels=train_labels, 
        num_sampled=num_sampled, 
        num_classes=vocabulary_size))
optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss)
主站蜘蛛池模板: 元氏县| 白玉县| 新河县| 曲麻莱县| 沙湾县| 铜鼓县| 天峻县| 渭源县| 岳西县| 通道| 平遥县| 调兵山市| 鱼台县| 天峨县| 连平县| 观塘区| 安达市| 南昌市| 武陟县| 台山市| 庆阳市| 图片| 桂阳县| 兴海县| 开封县| 余江县| 太仓市| 梅河口市| 定南县| 望奎县| 平顺县| 临夏市| 岳阳县| 西丰县| 林西县| 双柏县| 浦县| 织金县| 界首市| 邛崃市| 南丰县|