- Deep Reinforcement Learning Hands-On
- Maxim Lapan
- 91字
- 2021-06-25 20:46:52
Summary
My congratulations! You have started to learn the practical side of RL! In this chapter, we installed OpenAI Gym with tons of environments to play with, studied its basic API and created a randomly behaving agent. You also learned how to extend the functionality of existing environments in a modular way and got familiar with a way to record our agent's activity using the Monitor
wrapper.
In the next chapter, we will do a quick DL recap using PyTorch, which is a favorite library among DL researchers. Stay tuned.
推薦閱讀
- Oracle SOA Governance 11g Implementation
- 火格局的時空變異及其在電網防火中的應用
- Dreamweaver 8中文版商業案例精粹
- 機器學習與大數據技術
- 樂高創意機器人教程(中級 下冊 10~16歲) (青少年iCAN+創新創意實踐指導叢書)
- 液壓機智能故障診斷方法集成技術
- 過程控制系統
- 基于RPA技術財務機器人的應用與研究
- Unreal Development Kit Game Design Cookbook
- 電腦故障排除與維護終極技巧金典
- 西門子S7-1200/1500 PLC從入門到精通
- 大數據時代的調查師
- 計算機應用基礎學習指導與練習(Windows XP+Office 2003)
- Hands-On Geospatial Analysis with R and QGIS
- Hands-On Generative Adversarial Networks with Keras