- Deep Reinforcement Learning Hands-On
- Maxim Lapan
- 87字
- 2021-06-25 20:46:51
Summary
In this chapter, we started our journey into the RL world by learning what makes RL special and how it relates to the supervised and unsupervised learning paradigm. We then learned about the basic RL formalisms and how they interact with each other, after which we defined Markov process, Markov reward process, and Markov decision process.
In the next chapter, we'll move away from the formal theory into the practice of RL. We'll cover the setup required, libraries, and write our first agent.
推薦閱讀
- Hands-On Internet of Things with MQTT
- 高性能混合信號ARM:ADuC7xxx原理與應用開發(fā)
- 空間機器人遙操作系統(tǒng)及控制
- Dreamweaver CS3網(wǎng)頁設計與網(wǎng)站建設詳解
- 工業(yè)機器人工程應用虛擬仿真教程:MotoSim EG-VRC
- 機器人創(chuàng)新實訓教程
- Apache Spark Deep Learning Cookbook
- 水晶石精粹:3ds max & ZBrush三維數(shù)字靜幀藝術(shù)
- 項目管理成功利器Project 2007全程解析
- 教育機器人的風口:全球發(fā)展現(xiàn)狀及趨勢
- Flink原理與實踐
- 生物3D打印:從醫(yī)療輔具制造到細胞打印
- AVR單片機工程師是怎樣煉成的
- Building Google Cloud Platform Solutions
- Python文本分析