- Mastering Machine Learning for Penetration Testing
- Chiheb Chebbi
- 172字
- 2021-06-25 21:03:04
Dimensionality reduction
Dimensionality reduction is used to reduce the dimensionality of a dataset. It is really helpful in cases where the problem becomes intractable, when the number of variables increases. By using the term dimensionality, we are referring to the features. One of the basic reduction techniques is feature engineering.
Generally, we have many dimensionality reduction algorithms:
- Low variance filter: Dropping variables that have low variance, compared to others.
- High correlation filter: This identifies the variables with high correlation, by using pearson or polychoric, and selects one of them using the Variance Inflation Factor (VIF).
- Backward feature elimination: This is done by computing the sum of square of error (SSE) after eliminating each variable n times.
- Linear Discriminant Analysis (LDA): This reduces the number of dimensions, n, from the original to the number of classes?—?1 number of features.
- Principal Component Analysis (PCA): This is a statistical procedure that transforms variables into a new set of variables (principle components).
推薦閱讀
- 計算機網(wǎng)絡(luò)與通信(第2版)
- CorelDRAW X6 中文版圖形設(shè)計實戰(zhàn)從入門到精通
- 高校網(wǎng)絡(luò)道德教育研究
- INSTANT PhpStorm Starter
- HTML5 Game development with ImpactJS
- 計算機網(wǎng)絡(luò)工程實用教程(第2版)
- 區(qū)塊鏈輕松上手:原理、源碼、搭建與應用
- The Kubernetes Workshop
- 4G小基站系統(tǒng)原理、組網(wǎng)及應用
- 物聯(lián)網(wǎng)工程導論(第3版)
- 5G時代的大數(shù)據(jù)技術(shù)架構(gòu)和關(guān)鍵技術(shù)詳解
- 全聯(lián)網(wǎng)標識服務
- 基于IPv6的家居物聯(lián)網(wǎng)開發(fā)與應用技術(shù)
- 物聯(lián)網(wǎng)基礎(chǔ)及應用
- 小型局域網(wǎng)組建