官术网_书友最值得收藏!

What this book covers

Chapter 1, Introduction to Machine Learning in Pentesting, introduces reader to the fundamental concepts of the different machine learning models and algorithms, in addition to learning how to evaluate them. It then shows us how to prepare a machine learning development environment using many data science Python libraries.

Chapter 2, Phishing Domain Detection, guides us on how to build machine learning models to detect phishing emails and spam attempts using different algorithms and natural language processing (NLP).

Chapter 3, Malware Detection with API Calls and PE Headers, explains the different approaches to analyzing malware and malicious software, and later introduces us to some different techniques for building a machine learning-based malware detector.

Chapter 4, Malware Detection with Deep Learning, extends what we learned in the previous chapter to explore how to build artificial neural networks and deep learning to detect malware.

Chapter 5, Botnet Detection with Machine Learning, demonstrates how to build a botnet detector using the previously discussed techniques and publicly available botnet traffic datasets.

Chapter 6, Machine Learning in Anomaly Detection Systems, introduces us to the most important terminologies in anomaly detection and guides us to build machine learning  anomaly detection systems.

Chapter 7, Detecting Advanced Persistent Threats, shows us how to build a fully working real-world threat hunting platform using the ELK stack, which is already loaded by machine learning capabilities.

Chapter 8, Evading Intrusion Detection Systems with Adversarial Machine Learning, demonstrates how to bypass machine learning systems using adversarial learning and studies some real-world cases, including bypassing next-generation intrusion detection systems.

Chapter 9, Bypass Machine Learning Malware Detectors, teaches us how to bypass machine learning-based malware detectors with adversarial learning and generative adversarial networks.

Chapter 10Best Practices for Machine Learning and Feature Engineering, explores  different feature engineering techniques, in addition to introducing readers to machine learning best practices to build reliable systems.

主站蜘蛛池模板: 舞阳县| 宁陵县| 湛江市| 临安市| 泾源县| 衡南县| 华安县| 博客| 洪洞县| 浪卡子县| 靖边县| 英山县| 邢台县| 大城县| 普兰县| 长垣县| 青冈县| 河东区| 稻城县| 枣强县| 陆良县| 翼城县| 哈巴河县| 安丘市| 利川市| 宜宾县| 若尔盖县| 高碑店市| 旌德县| 徐州市| 荣成市| 绿春县| 千阳县| 贵州省| 临清市| 太湖县| 图们市| 吉安县| 明光市| 屯门区| 永城市|