官术网_书友最值得收藏!

L1 and L2 normalization

L1 and L2 normalization are common regularization techniques that control how much the weights can grow or shrink in the network during training. It has the effect of not giving too much importance to a specific feature, similar to dropout. In L1 regularization, the loss function increases in direct proportion to the size of the weights, whereas in L2 normalization, it increases in proportion to the square of the weights.

主站蜘蛛池模板: 北流市| 白朗县| 江陵县| 张家界市| 定远县| 建始县| 元朗区| 德清县| 宁陵县| 开远市| 汝南县| 丹江口市| 河池市| 石泉县| 西乌珠穆沁旗| 乌鲁木齐县| 芜湖县| 通辽市| 宜黄县| 长葛市| 呈贡县| 水城县| 罗山县| 铁岭县| 屏边| 巴林右旗| 墨竹工卡县| 会宁县| 西平县| 北辰区| 红原县| 宝应县| 中宁县| 洪湖市| 巴楚县| 南康市| 丰台区| 耒阳市| 吉隆县| 乐安县| 上虞市|