- Hands-On Natural Language Processing with Python
- Rajesh Arumugam Rajalingappaa Shanmugamani
- 106字
- 2021-08-13 16:01:47
Softmax
Softmax normalizes or squashes a vector of arbitrary values to a probability distribution between 0 and 1. The sum of the softmax output will be equal to 1. Therefore, it is commonly used in the last layer of a neural network to predict probabilities of the possible output classes. The following is the mathematical expression for the softmax function for a vector with j values:

Here zj represents the jth vector value and K represents the number of classes. As we can see the exponential function smoothens the output value while the denominator normalizes the final value between 0 and 1.
推薦閱讀
- Vue.js 3.x快速入門
- Learning Cython Programming(Second Edition)
- ThinkPHP 5實戰
- 零基礎PHP學習筆記
- Leap Motion Development Essentials
- Visual Basic程序設計與應用實踐教程
- 表哥的Access入門:以Excel視角快速學習數據庫開發(第2版)
- WebRTC技術詳解:從0到1構建多人視頻會議系統
- Arduino家居安全系統構建實戰
- 愛上micro:bit
- C/C++數據結構與算法速學速用大辭典
- Troubleshooting Citrix XenApp?
- Python函數式編程(第2版)
- jQuery技術內幕:深入解析jQuery架構設計與實現原理
- Android技術內幕(系統卷)