- Hands-On Natural Language Processing with Python
- Rajesh Arumugam Rajalingappaa Shanmugamani
- 106字
- 2021-08-13 16:01:47
Softmax
Softmax normalizes or squashes a vector of arbitrary values to a probability distribution between 0 and 1. The sum of the softmax output will be equal to 1. Therefore, it is commonly used in the last layer of a neural network to predict probabilities of the possible output classes. The following is the mathematical expression for the softmax function for a vector with j values:

Here zj represents the jth vector value and K represents the number of classes. As we can see the exponential function smoothens the output value while the denominator normalizes the final value between 0 and 1.
推薦閱讀
- 數據庫系統教程(第2版)
- HTML5+CSS3基礎開發教程(第2版)
- Responsive Web Design with HTML5 and CSS3
- MongoDB權威指南(第3版)
- 數據結構習題解析與實驗指導
- Getting Started with LLVM Core Libraries
- Mastering Unity 2D Game Development(Second Edition)
- Learning Apache Cassandra
- Hands-On Nuxt.js Web Development
- HTML5權威指南
- Hands-On JavaScript for Python Developers
- C語言程序設計與應用(第2版)
- RocketMQ實戰與原理解析
- Moodle 3 Administration(Third Edition)
- Flask開發Web搜索引擎入門與實戰