官术网_书友最值得收藏!

Activation functions

One of the important components in a neural network is the activation function. The activation function can transform the input of a neural network node into non-linear output. Such activation functions enable the neural network to learn arbitrary non-linear mappings or patterns from data. The activation can be thought of as an event of firing a node. As explained previously, in the case of a unit step function, the perceptron is either fired or not fired, corresponding to a value of 1 or 0, respectively. There are other kinds of activation functions, such as sigmoid, hyperbolic target, and rectified linear unit (ReLU), which will be discussed next.

主站蜘蛛池模板: 衢州市| 来宾市| 锡林浩特市| 柘荣县| 鲜城| 鄂伦春自治旗| 石楼县| 平昌县| 金乡县| 崇文区| 临武县| 综艺| 枣阳市| 仲巴县| 大厂| 磐石市| 张家港市| 枝江市| 余干县| 汤阴县| 喀喇沁旗| 三门峡市| 随州市| 公安县| 宁津县| 邳州市| 惠安县| 广平县| 铁岭市| 明水县| 牡丹江市| 讷河市| 海淀区| 灵寿县| 康定县| 建水县| 奉化市| 苗栗市| 南澳县| 松原市| 山东|