官术网_书友最值得收藏!

  • Keras Deep Learning Cookbook
  • Rajdeep Dua Manpreet Singh Ghotra
  • 218字
  • 2021-06-10 19:38:55

Initialize the loss

The loss is binary cross_entropy.

Cross-entropy loss, also called log loss, measures the performance of a model (classification model). The output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted probability diverges from the actual value:  .
self.loss = loss or []

Initialize all internal variables for output:

 self._feed_outputs = []
self._feed_output_names = []
self._feed_output_shapes = []
self._feed_loss_fns = []

Prepare the targets of the model:

self._feed_targets.append(target)
self._feed_outputs.append(self.outputs[i])
self._feed_output_names.append(name)
self._feed_output_shapes.append(shape)
self._feed_loss_fns.append(self.loss_functions[i])

Prepare sample weights:

Before compilation, the following values are assigned to sample weights and sample_weight_modes:

sample_weights = []
sample_weight_modes = []

After running through the code execution, it gets initialized to the following values:

Tensor("dense_3_sample_weights:0", shape=(?,), dtype=float32)

Prepare the metrics:

Next, we prepare metric names and metrics_tensors, which store the actual metrics:

self.metrics_names = ['loss']
self.metrics_tensors = []

Prepare total loss and metrics:

The loss is calculated and appended to self.metrics_tensors:

output_loss = weighted_loss(y_true, y_pred,
sample_weight, mask)
...
self.metrics_tensors.append(output_loss)
self.metrics_names.append(self.output_names[i] + '_loss')

Next, we calculate nested metrics and nested_weighted_metrics:

nested_metrics = collect_metrics(metrics, self.output_names)
nested_weighted_metrics = collect_metrics(weighted_metrics, self.output_names)

Initialize the test, train, and predict functions:

These are initialized lazily:

self.train_function = None
self.test_function = None
self.predict_function = None

Sort trainable weights:

In the end, we initialize the trainable weights:

trainable_weights = self.trainable_weights
self._collected_trainable_weights = trainable_weights
主站蜘蛛池模板: 三原县| 合作市| 万安县| 宝坻区| 资阳市| 迁西县| 富顺县| 庆城县| 托克逊县| 台北县| 平阳县| 大田县| 淮安市| 太仆寺旗| 南城县| 醴陵市| 渝中区| 大竹县| 仪陇县| 巴中市| 湖南省| 镶黄旗| 军事| 紫阳县| 易门县| 化州市| 高青县| 上犹县| 巢湖市| 芷江| 治多县| 广州市| 石家庄市| 元谋县| 呼玛县| 久治县| 焉耆| 万荣县| 清苑县| 阳江市| 平罗县|