官术网_书友最值得收藏!

How to do it...

Let's look at how to load this dataset and print the shapes for X_train, y_train, X_test, and y_test. The CIFAR-100 dataset is available through the load_data() function in keras.datasets.cifar100.

The dataset is downloaded from https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz; this is hidden in the following implementation:

from keras.datasets import cifar100
(X_train, y_train), (X_test, y_test) = cifar100.load_data()
print("X_train shape: " + str(X_train.shape))
print("y_train shape: " + str(y_train.shape))
print("X_test shape: " + str(X_test.shape))
print("y_test shape: " + str(y_test.shape))

The output of the preceding listing sizes is shown in the following snippet:

X_train shape: (50000, 32, 32, 3)
y_train shape: (50000, 1)
X_test shape: (10000, 32, 32, 3)
y_test shape: (10000, 1)
主站蜘蛛池模板: 雷波县| 句容市| 姜堰市| 攀枝花市| 左贡县| 剑阁县| 湘潭市| 大安市| 玉龙| 吴川市| 阿鲁科尔沁旗| 阿拉善右旗| 高安市| 婺源县| 临潭县| 滕州市| 吉林市| 佛冈县| 江陵县| 麻栗坡县| 平邑县| 河池市| 兴城市| 通山县| 东海县| 营山县| 商洛市| 友谊县| 吉安县| 邵阳县| 渝中区| 乌兰察布市| 曲阜市| 光泽县| 松滋市| 兖州市| 旌德县| 监利县| 沙洋县| 探索| 拜泉县|