官术网_书友最值得收藏!

How to do it...

Let's look at how to load this dataset and print the shapes for X_train, y_train, X_test, and y_test. The CIFAR-100 dataset is available through the load_data() function in keras.datasets.cifar100.

The dataset is downloaded from https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz; this is hidden in the following implementation:

from keras.datasets import cifar100
(X_train, y_train), (X_test, y_test) = cifar100.load_data()
print("X_train shape: " + str(X_train.shape))
print("y_train shape: " + str(y_train.shape))
print("X_test shape: " + str(X_test.shape))
print("y_test shape: " + str(y_test.shape))

The output of the preceding listing sizes is shown in the following snippet:

X_train shape: (50000, 32, 32, 3)
y_train shape: (50000, 1)
X_test shape: (10000, 32, 32, 3)
y_test shape: (10000, 1)
主站蜘蛛池模板: 长垣县| 连城县| 呼伦贝尔市| 丹棱县| 紫云| 嫩江县| 淅川县| 文山县| 台南市| 锡林郭勒盟| 德昌县| 阿巴嘎旗| 宁南县| 英吉沙县| 驻马店市| 龙川县| 宜昌市| 东城区| 巴楚县| 平安县| 塔河县| 馆陶县| 彭阳县| 山丹县| 应用必备| 文化| 蒲城县| 万宁市| 辽阳市| 沧州市| 鲜城| 马公市| 巴里| 淮安市| 平和县| 辽中县| 米脂县| 丰县| 南投市| 徐汇区| 沂水县|