- Keras Deep Learning Cookbook
- Rajdeep Dua Manpreet Singh Ghotra
- 158字
- 2021-06-10 19:38:51
How to do it...
Let's load this dataset using the Keras APIs and print the shape and size:
from keras.datasets import cifar10
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
print("X_train shape: " + str(X_train.shape))
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
The first time, it will download the file from the preceding site:
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
8192/170498071 [..............................] - ETA: 22:43
40960/170498071 [..............................] - ETA: 9:12
106496/170498071 [..............................] - ETA: 5:27
237568/170498071 [..............................] - ETA: 3:11
286720/170498071 [..............................] - ETA: 4:39
...
170418176/170498071 [============================>.] - ETA: 0s
170467328/170498071 [============================>.] - ETA: 0s
170500096/170498071 [==============================] - 308s 2us/step
The following output shows X_train has 50,000 images of size 32 x 32 containing three channels. y_train has 50,000 rows and one column with the image label. X_test and y_test also have a similar shape for 10,000 rows:
X_train shape: (50000, 32, 32, 3)
y_train shape: (50000, 1)
X_test shape: (10000, 32, 32, 3)
y_test shape: (10000, 1)
In the next recipe, we look at how to load the CIFAR-100 dataset.
推薦閱讀
- 大數(shù)據專業(yè)英語
- Hadoop 2.x Administration Cookbook
- IoT Penetration Testing Cookbook
- 模型制作
- Visual Basic從初學到精通
- 可編程控制器技術應用(西門子S7系列)
- Blender Compositing and Post Processing
- Docker High Performance(Second Edition)
- Nginx高性能Web服務器詳解
- 分數(shù)階系統(tǒng)分析與控制研究
- Photoshop行業(yè)應用基礎
- 人工智能技術入門
- 單片機技能與實訓
- 手機游戲策劃設計
- Data Analysis with R(Second Edition)