- Keras Deep Learning Cookbook
- Rajdeep Dua Manpreet Singh Ghotra
- 158字
- 2021-06-10 19:38:51
How to do it...
Let's load this dataset using the Keras APIs and print the shape and size:
from keras.datasets import cifar10
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
print("X_train shape: " + str(X_train.shape))
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
The first time, it will download the file from the preceding site:
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
8192/170498071 [..............................] - ETA: 22:43
40960/170498071 [..............................] - ETA: 9:12
106496/170498071 [..............................] - ETA: 5:27
237568/170498071 [..............................] - ETA: 3:11
286720/170498071 [..............................] - ETA: 4:39
...
170418176/170498071 [============================>.] - ETA: 0s
170467328/170498071 [============================>.] - ETA: 0s
170500096/170498071 [==============================] - 308s 2us/step
The following output shows X_train has 50,000 images of size 32 x 32 containing three channels. y_train has 50,000 rows and one column with the image label. X_test and y_test also have a similar shape for 10,000 rows:
X_train shape: (50000, 32, 32, 3)
y_train shape: (50000, 1)
X_test shape: (10000, 32, 32, 3)
y_test shape: (10000, 1)
In the next recipe, we look at how to load the CIFAR-100 dataset.
推薦閱讀
- GNU-Linux Rapid Embedded Programming
- 數據展現的藝術
- Natural Language Processing Fundamentals
- Learning Apache Cassandra(Second Edition)
- 樂高創意機器人教程(中級 下冊 10~16歲) (青少年iCAN+創新創意實踐指導叢書)
- 21天學通ASP.NET
- 智能工業報警系統
- 大數據技術與應用
- Hybrid Cloud for Architects
- 基于32位ColdFire構建嵌入式系統
- 電氣控制與PLC技術應用
- 工業機器人實操進階手冊
- HBase Essentials
- 貫通Java Web輕量級應用開發
- Learning Cassandra for Administrators